Network Basics 1

Advanced Social Computing

Department of Computer Science University of Massachusetts, Lowell Fall 2020

Hadi Amiri <u>hadi@cs.uml.edu</u>

Lecture Topics

- Graph Theory
 - Node degree
 - Graph density
 - Complete Graph
 - Distance and Diameter
 - Adjacency matrix
 - Graph Connectivity
 - Reachability
 - Sub-graphs
 - Graph Types

Terminology

- Graph terminology is often derived from transportation metaphors
 - E.g. "shortest path", "flow", "diameter"

Graphs as Models of Networks

- Abstract graph theory is interesting in itself
- But in network science, items typically represent real-world entities
 - Examples
 - Communication networks
 - Companies, telephone wires
 - Social networks
 - People, friendship/contacts
 - Information networks
 - Web sites, hyperlinks

Graphs as Models of Networks - Cnt.

- ARPANET: Early Internet precursor
- December 1970 with 13 nodes

Basic Graph Concepts

Graph Theory

- A graph consists of
 - N: a set of nodes (items, entities, people, etc), and
 - **E**: a set of links or edges between nodes
- Graph is a way to specify relationships / links amongst a set of nodes.
- We define
 - $N = |N| \rightarrow \text{size of } N$
 - $E = |E| \rightarrow \text{size of } E$

Graph Theory. Cnt.

- Nodes *i* and *j* are *adjacent* or *neighbors* if:
 - There is an edge btw them!
 - *i* ∈ **N**
 - *j* є **N**
 - (*i*, *j*) \in **E**

Sample Graphs 1.

Node Degree *d*(*i*)

- Given Node *i*, its degree d(i) is:
 - the number nodes adjacent to it.

	Actor	Lives near:	Degree
n1	Allison	Ross, Sarah	2
n2	Drew	Eliot	1
n3	Eliot	Drew	1
n4	Keith	Ross, Sarah	2
n5	Ross	Allison, Keith, Sarah	3
n_6	Sarah	Allison, Keith, Ross	3

$$l_1 = (n_1, n_5)$$

$$l_2 = (n_1, n_6)$$

$$l_3 = (n_2, n_3)$$

$$l_4 = (n_4, n_5)$$

$$l_5 = (n_4, n_6)$$

$$l_6 = (n_5, n_6)$$

Graph Density

UMASS

• How many edges are possible?

Graph Density- Cnt.

• (N-1) + (N-2) + (N-3) + ... + 1 = N * (N-1) / 2

Graph Density- Cnt.

- Graph Density of a given graph G is determined by:
 - the proportion of all possible edges that are present in the graph.
 - with N nodes and E edges, graph density is:

Density = 2 * E / N * (N-1)

Graph Density- Cnt.

• What is the density of this graph?

Complete Graph

• If all edges are present, then all nodes are adjacent (neighbors), and the graph is a *Complete Graph*.

What is the density of a complete graph?

Distance and Diameter

- Distance btw node *i* and *j*: *d*(*i*,*j*)
 length of the *shortest path* between *i* and *j*
- Diameter of a graph
 - the maximum value of d(i,j) for all *i* and *j*

The path with min number of edges.

Diameter of graph = max d(i, j) = d(1, 5) = 3

What is the distance and diameter of a complete graph?

Adjacency Matrix

• Each row or column represents a node!

A = A^T Properties of adjacency matrix \rightarrow next session

Graph Connectivity

- Indirect connections between nodes:
 - Walks
 - Trails
 - Paths

• Walk

 A sequence of nodes and edges that starts and ends with nodes where each node is incident to the edges following and preceding it.

• Trail

- A trail is a walk with distinct edges
- Path
 - A path is a walk with distinct nodes & edges.
- The length of a walk, trail, or path is the number of edges in it.

• Walk

 A sequence of nodes and edges that starts and ends with nodes where each node is incident to the edges following and preceding it.

• Walk

 A sequence of nodes and edges that starts and ends with nodes where each node is incident to the edges following and preceding it.

Sample Walk: $W=n_1l_2n_4l_3n_2l_3n_4$

• Trail

 A trail is a walk in which all edges are distinct, although some node(s) may be included more than once.

• Trail

 A trail is a walk in which all edges are distinct, although some node(s) may be included more than once.

• Path

 A path is a walk in which all nodes and all edges are distinct.

• Path

 A path is a walk in which all nodes and all edges are distinct.

• Is this a Walk? Trail? Path?

 We call a *closed walk* with distinct nodes & edges Cycle!

Reachability

• If there is a **path between nodes** *i* and *j*, then *i* and *j* are reachable from each other.

Connected Graph

- A graph is connected if *every pair of its nodes* are reachable from each other
 - i.e. there is a path between them.

Disconnected Graph

How can we make this graph connected?

Connected Graph

and this graph disconnected?

Sub-graphs

• Graph G_s is a sub-graph of G if its nodes and edges are a subset of G's nodes and edges respectively.

Sub-graphs- Cnt.

- UMASS
- Graph G_s is a sub-graph of G if its nodes and edges are a subset nodes and edges of G respectively.

Graph Types

- Several types of graphs:
 - Bipartite graphs
 - Digraphs
 - Multigraphs
 - Hypergraphs
 - Weighted/Signed

Graph Types- Bipartite Graphs

- A bipartite graph is an undirected graph in which
 - nodes can be partitioned into two (disjoint) sets N₁ and N₂ such that:
 - $(u, v) \in E$ implies either $u \in N_1$ and $v \in N_2$ or vice versa
 - So, all edges go between the two sets N_1 and N_2 but not within N_1 or N_2 .

Graph Types- Digraphs

- Digraphs or Directed Graphs
 - Edges are directed
- Adjacency:
 - There is a direct edge btw nodes!
 - *i* є N
 - $\cdot j \in \mathbb{N}$
 - (*i*, *j*) \in E

- Node Indegree and Outdegree
 - Indegree
 - The indegree of a node, d_I(*i*), is the number of nodes that link to *i*,
 - Outdegree
 - The outdegree of a node, d_o(*i*), is the number of nodes that are linked by *i*,
- Indegree: number of edges terminating at *i*.
- Outdegree: number of edges originating at *i*.

 $A != A^{T}$

- Density of Digraph:
 - Number of all possible edges in Digraph?
 - N * (N-1)

$$\frac{E}{N * (N-1)}$$

- Connectivity
 - Walks
 - Trails
 - Paths
- The same as before just links are directed!

Graph Types- Multigraphs

- A Multigraph (or multivariate graph) *G* consists of:
 a set of nodes, *and*
 - two or more sets of edges, E⁺ = {E₁, E₂, ..., E_r}, r is the number of edge sets.

Multigraph 1.

Multigraph 2.

- Each *E_i* indicated one type of relationship, e.g.:
 - **E**₁: lives near relationship
 - **E**₂: friends at the beginning of the year
 - **E**₃: friends at the end of the year

- Number of edges btw any two nodes in a multigraph?
 - $E^+ = \{E_1, E_2, ..., E_r\}, r$ is the number of sets of edges
 - Undirected multigraph
 - [0, r]
 - Directed multigraph
 - [0, 2*r]

Graph Types- Hypergraphs

- A hypergraph is a graph in which an edge can connect any number of nodes.
- In a hypergraph, *E* is a set of non-empty subsets of *N* called *hyperedges*.

Graph Types- Hypergraphs- Cnt.

- A hypergraph is a graph in which an edge can connect any number of nodes.
- In a hypergraph, *E* is a set of non-empty subsets of *N* called *hyperedges*.

 $\mathbf{N}{=}\{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$

 $\mathbf{E} = \{e_1, e_2, e_3, e_4\} =$

 $\{\{v_1, v_2, v_3\}, \{v_2, v_3\}, \{v_3, v_5, v_6\}, \{v_4\}\}$

Graph Types- Hypergraphs- Cnt.

- Applications:
 - Recom. systems (communities as edges),
 - Image retrieval (correlations as edges),
 - Bioinformatics (interactions or semantic types as edges).

 $\mathbf{N}{=}\{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$

 $\mathbf{E} = \{e_1, e_2, e_3, e_4\} =$

 $\{\{v_1, v_2, v_3\}, \{v_2, v_3\}, \{v_3, v_5, v_6\}, \{v_4\}\}$

Weighted/Signed Graphs

- Edges may carry additional information
 - Tie strength \rightarrow how good are two nodes as friends?
 - Distance \rightarrow how long is the distance btw two cities?
 - Delay → how long does the transmission take btw two cities?
 - Signs \rightarrow two nodes are friends or enemies?

Reading

UMASS

- Ch.02 Graphs [NCM]
- Ch. 22 Elementary Graph Algorithms [CLRS]