
Centrality & Clustering

Advanced Social Computing

Department of Computer Science University of Massachusetts, Lowell Fall 2020

Hadi Amiri <u>hadi@cs.uml.edu</u>

Lecture Topics

- Centrality
 - Degree Centrality
 - Closeness Centrality
 - Betweenness Centrality
- Clustering
 - Edge Betweenness
 - Computing Edge Betweenness

Centrality

- What characterizes an important node in a network?
 - Most influential people in social nets,
 - Key infrastructure nodes in the Internet
 - Main spreaders of disease
 - Etc.
- Structural view:
 - Importance of a node is related to its position in the network.

Centrality Measures

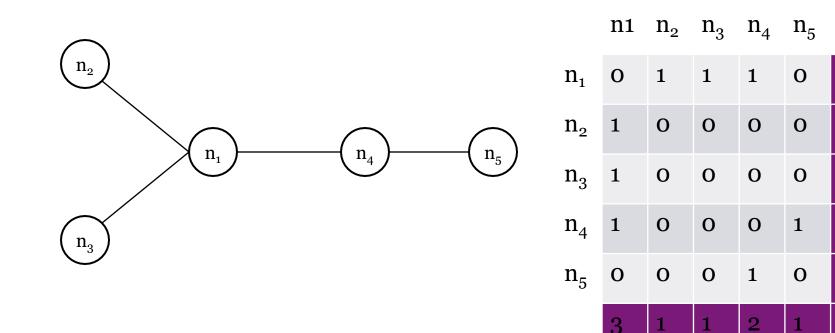
- Different centrality measures capture different structural characteristics of nodes!
- There is often a high correlation between these measures!
- Sometimes the most important node might depend on which measure is used!

- C : Centrality
 - C (*i*) : Centrality for node *i*
 - C(A): Centrality for a group of nodes $A \in N$

Centrality Measures- Cnt.

- Centrality
 - Degree Centrality
 - Closeness Centrality
 - Betweenness Centrality

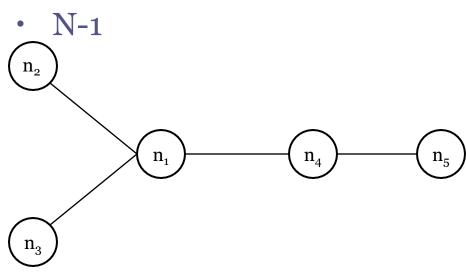
Degree Centrality


A node is central if it has links to many nodes.
Look at the node degree

 n_2 n_1 n_4 n_5 n_3

Degree Centrality- Cnt.

A node is central if it has links to many nodes.
Look at the node degree

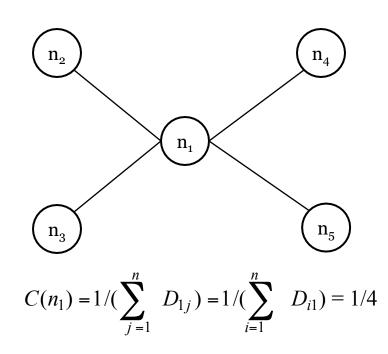


Adjacency Matrix (A)

Degree Centrality- Cnt.

- Standardized Degree Centrality
 - Divide by the maximum possible degree centrality value!

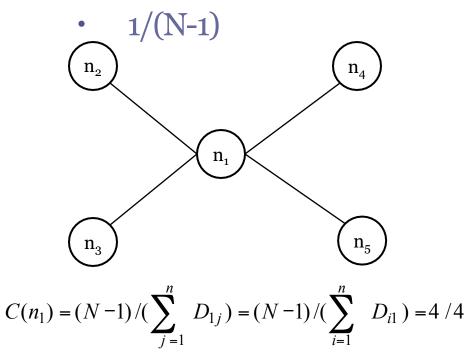
n1 n_2 n_3 n_4 n_5 3⁄4 n₁ 1/4 n_2 1/4 n_3 1/2n₄ 1/4 n_5


Centrality Measures- Cnt.

- Centrality
 - Degree Centrality
 - Closeness Centrality
 - Betweenness Centrality

Closeness Centrality

- A node is central if it is **close to other nodes**.
 - Look at distance btw nodes
 - Closeness: 1 / Sum of distance to other nodes



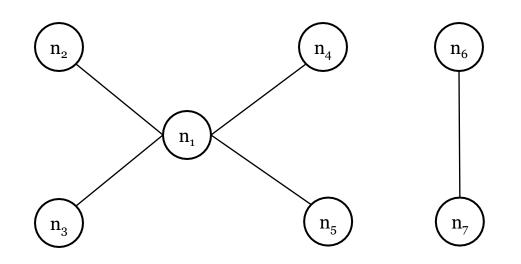
n1 n_2 n_3 n_4 n_5 1/4 1 1 1 1 n, 0 1/7 n_2 1 0 2 2 2 1/7 n₃ 1 2 0 2 2 1/7 n_4 1 2 2 0 2 n₅ 1 2 2 2 1/7 0

Distance Matrix (D)

Closeness Centrality- Cnt.

- Standardized Closeness Centrality
 - Divide by the maximum possible closeness centrality value!

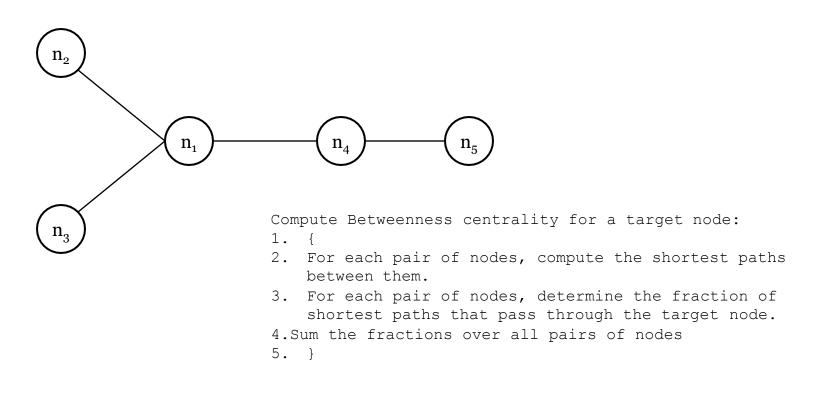
n1 n_2 n_3 n_4 n_5 4/41 1 1 1 n₁ 0 4/70 2 2 2 n₂ 1 4/7 n₃ 1 2 0 2 2 4/7 2 n₄ 1 2 0 2 4/7n₅ 1 2 2 2 0


Distance Matrix (D)

Closeness Centrality- Cnt.

• How to compute Closeness Centrality in networks with disconnected components?

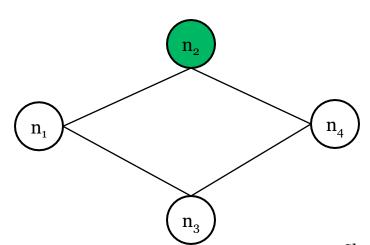
- Only consider the giant component or do graph sampling?
- Only consider nodes that are reachable in paths of length 1, 2, ... This is called k-Step Reach!


Centrality Measures- Cnt.

- Centrality
 - Degree Centrality
 - Closeness Centrality
 - Betweenness Centrality

Betweenness Centrality

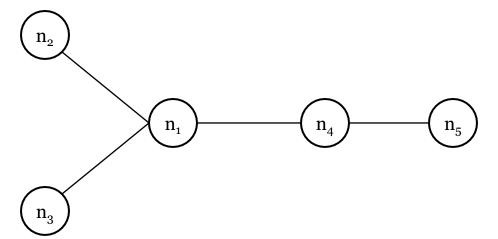
- A node is central if other nodes have to go through it to reach each other.
 - Look at shortest paths between nodes



 s_{jk} Number of shortest paths btw nodes n_j and n_k

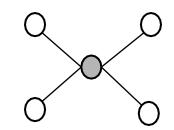
Sum(_{j,k!=i}

- $s_{jk}(n_i)$ Number of shortest paths btw nodes n_j and n_k that include node n_i
- $\frac{\mathbf{s}_{jk}(n_i)}{\mathbf{s}_{jk}}$ Proportion of shortest paths btw nodes n_j and n_k that include node n_i

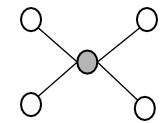

Proportion of shortest paths btw all nodes that include node n_i

Shortest paths n ₁ -n ₄	$n_1 - n_2 - n_4, n_1 - n_3 - n_4$
S ₁₄	2
$s_{14}(n_2)$	1
$s_{14}(n_2)/s_{14}$	1/2
C(n ₂)	1/2

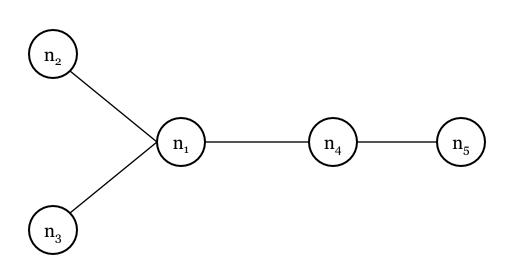
Shortest paths btw n_1 - n_3 and n_3 - n_4 don't include n_2 ! Their corresponding proportions are 0.



Pair	Shortest path Betweenne		enness
n1 n2	n1-n2	n1	5
n1 n3	n1-n3	n2	0
n1 n4	n1-n4	n3	0
n1 n5	n1-n4-n5	n4	3
n2 n3	n2-n1-n3 n5		0
n2 n4	n2-n1-n4		
n2 n5	n2-n1-n4-n5		
n3 n4	n3-n1-n4		
n3 n5	n3-n1-n4-n5		

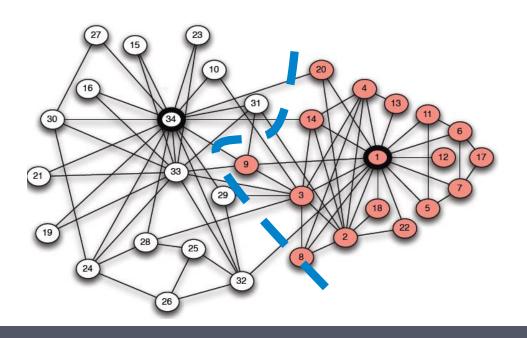


- Standardized Betweenness Centrality
 - Divide by the maximum possible betweenness centrality value!
 - ?



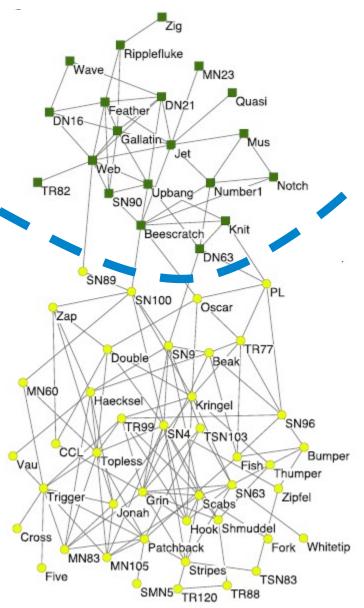
- Standardized Betweenness Centrality
 - Divide by the maximum possible betweenness centrality value!
 - (N-1)(N-2)/2 : the number of other pairs of nodes (exclude the node itself)

- Standardized Betweenness Centrality
 - Divide by the maximum possible betweenness centrality value!
 - (N-1)(N-2)/2 : the number of other pairs of nodes (exclude the node itself)



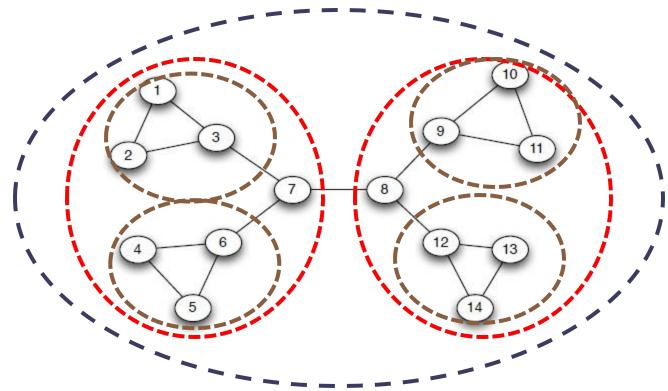
Betwee	enness	Stnd. Betweenness
n1	5	5/6 = 0.83
n2	0	0/6 = 0.00
n3	0	0/6 = 0.00
n4	3	3/6 = 0.50
n5	0	0/6 = 0.00

Clustering

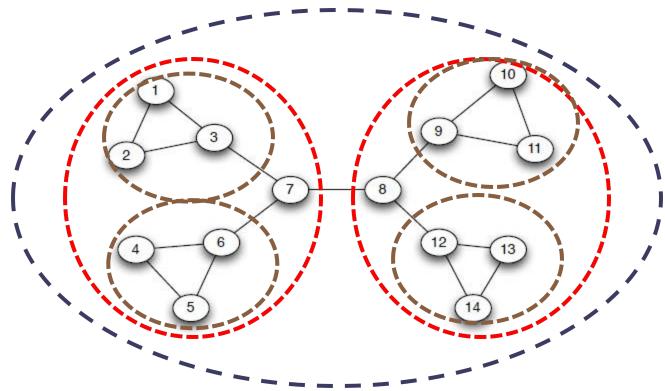

- We aim to develop techniques to identify densely connected regions
 - breaking a network into a set of densely connected nodes
 - with sparse connections between groups
- Graph Partitioning

UMASS

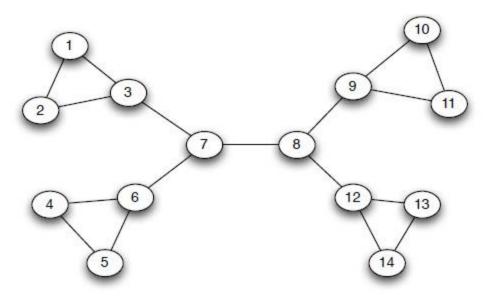
Clustering- Cnt.


- Members of the same group are heavily connected, while
- Members of different groups are less connected!

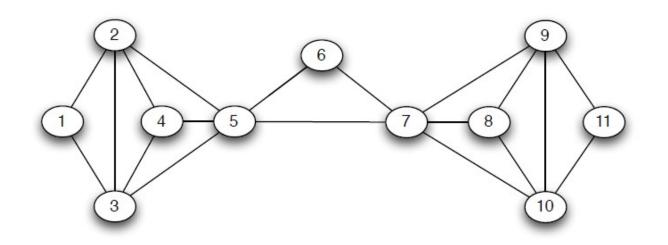
Clustering- Approaches


- Divisive methods
 - breaking first at the 7-8 edge, and then the nodes into nodes 7 and 8

Clustering- Approaches- Cnt.

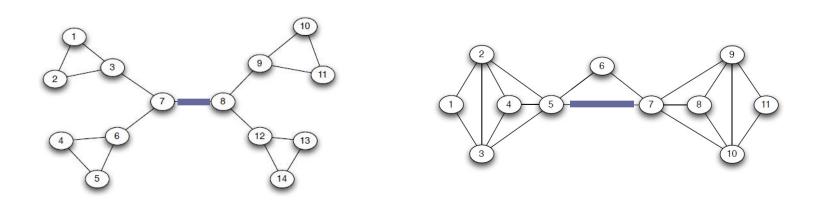

- Agglomerative methods
 - merge the 4 triangles and then pairs of triangles (via nodes 7 and 8)

Divisive Approach


- Bridges connect tightly-knit groups in networks!
 - To find clusters, remove bridges and local bridges!
 - Issue 1: when there are several bridges, which one to remove?

Divisive Approach- Cnt.

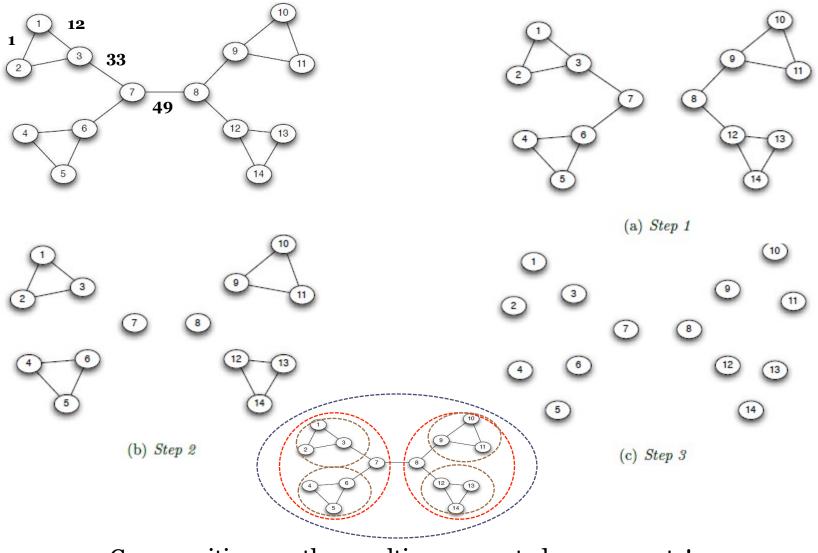
- Bridges connect tightly-knit groups in networks!
 - To find cluster, remove bridges and local bridges!
 - Issue 2: What if there is no bridge?



A network can display tightly-knit regions even when there are no bridges or local bridges along which to separate it.

Divisive Approach- Cnt.

- Bridges form part of the shortest path between pairs of nodes in different parts of the network!
 - Find edges that carry most of "traffic" in the network and successively remove edges of high traffic!



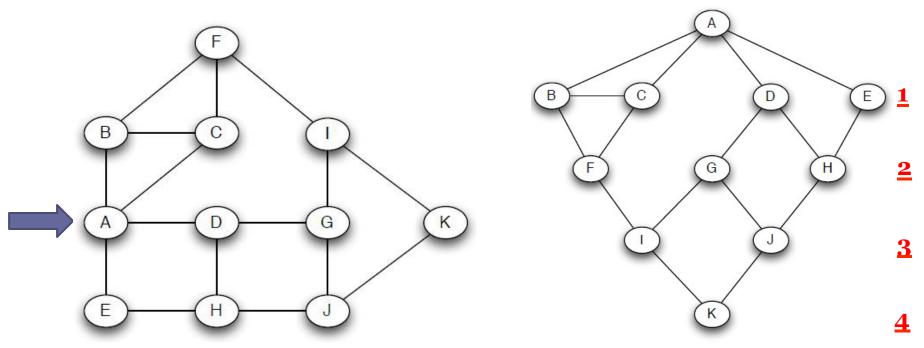
Edge Betweenness

- Edge Betweenness:
 - Let's assume 1 unit of "flow" will pass over all shortest paths btw any pair of nodes A and B.
 - If there are *k* shortest path btw A and B, then 1/k units of flow will go along each shortest path!
 - Betweenness of an edge is the total amount of flow it carries!
- Girvan-Newman Algorithm:
 - Repeat until no edges are left:
 - Calculate betweenness of edges
 - Remove edges with highest betweenness

Edge Betweenness- Cnt.

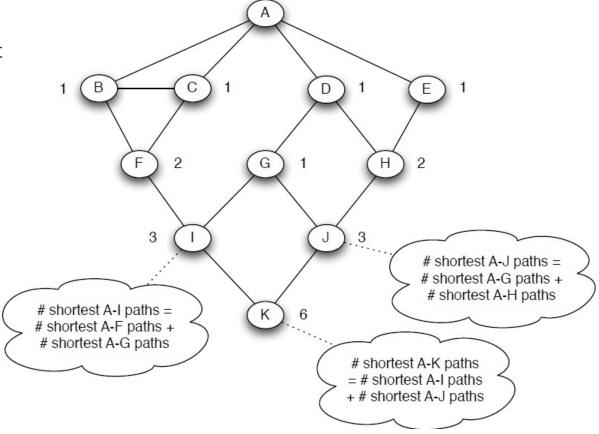
Communities are the resulting connected components!

Computing Edge Betweenness

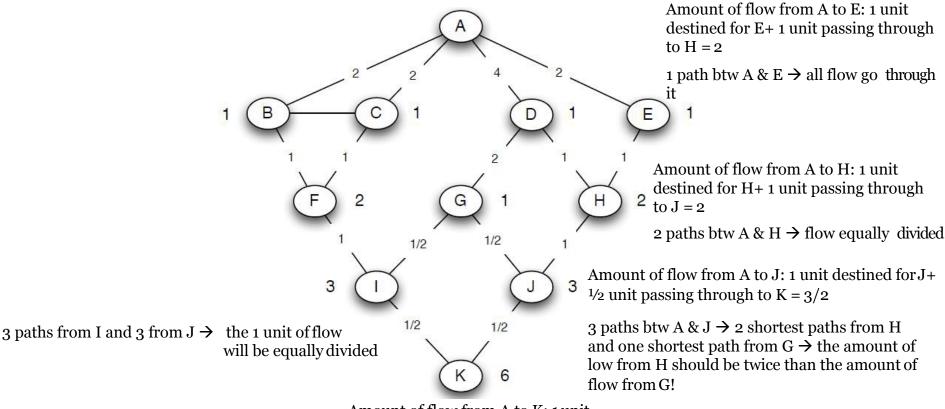

A clever way to compute betweennesses efficiently
 Use breadth-first Search

- 1. For each node A{
- 2. Run BFS on A
- 3. Count the number of shortest paths from A to any other node
- 4. Determine the amount of traffic from A to other nodes
- 5. }
- 6. Compute betweenness for each edge by summing all the traffic passing over the edge

Computing Edge Betweenness


- A clever way to compute betweennesses efficiently
 - Use breadth-first Search
 - Consider the graph from the perspective of one node at a time!

(b) Breadth-first search starting at node A


A clever way to compute betweennesses efficiently
 Count the number of shortest paths from A to all other nodes of the network

Number of shortest paths to each node is the sum of the number of shortest paths to all nodes directly above it!

- A clever way to compute betweennesses efficiently
 - Determine the amount of traffic from A to others
 - If there are *k* shortest path btw A and B, then 1/k units of flow will go through each shortest path.
 - Working up from the lowest layers and computing the amount of flow that pass through each edge!

A clever way to compute betweennesses efficiently
 Determine the amount of traffic from A to others

Amount of flow from A to K: 1 unit

A clever way to compute betweennesses efficiently
 Use breadth-first Search

For each node A{
 Run BFS on A
 Count the number of shortest paths from A to any other node
 Determine the amount of traffic from A to other nodes
 }
 Compute betweenness for each edge by summing all the traffic passing over the edge and divide by 2

Note that we count the flow between each pair of nodes A and B twice (once when running BFS from A and once when running BFS from B)! So, we need to divide resulting values by 2!

Reading

- Ch.o3 Strong and Weak Ties [NCM]
- Why we twitter: understanding microblogging usage and communities. WebKDD'07.
- Community detection in graphs. Fortunato, S. Physics reports 2010
- Searching for superspreaders of information in real-world social media. Pei, S., et al. Scientific reports 2014.