Information Cascades

Advanced Social Computing

Department of Computer Science University of Massachusetts, Lowell Fall 2020

Hadi Amiri hadi@cs.uml.edu

Announcement

- Midterm Exam
- 10/14, 3:30-6:20 PM
- PRP out
- Due Date: 10/21, 3:30 PM

Lecture Topics

- Information Cascades
- Cascade Principles
- Simple Cascade Model

Following the Crowd

- Social relations enable people to influence each other's behavior and decisions.
- opinions they hold,
- political positions they support,
- activities they pursue,
- technologies they use, etc.
- Information cascade
- behaviors that cascade from one node to another like an epidemic! and produce collective outcomes.
- We aim to reason about why such influence occurs!

Following the Crowd- Cnt.

- Local Mind!

- Restaurant choice!

Rational to join the crowd rather than to follow your own private information!

Following the Crowd- Cnt.

- Local Mind!

- 15 people stand on a street corner and stare up into the sky!!!
- How many passersby stopped and looked up?
- More people staring up more passersby stopped!
- all people looking up 45% of passersby stopped!

Following the Crowd- Demo!

- How to start a movement!

Ideas worth spreading

Following the Crowd- Cnt.

- Information cascade often occurs when people make decisions sequentially, with later people watching the actions of earlier people.
- From these actions people infer something about what the earlier people know!

Cascade Framework

- There is a decision to be made
- E.g., whether to adopt a new technology, wear a new style of clothing, eat in a new restaurant, or support a particular political position.
- People make decisions sequentially.
- People can observe choices made by those who acted earlier.
- Each person has some private info that helps to make decision.
- A person can't directly observe the other's private info, but he/ she can observe what they do.

Cascade Example

- Urn with 3 (blue or red) marbles
- A large group of participants
- Each participant:
- Draws a marble from the urn
- Looks at the color
- Places it back without showing others
- Guesses whether the urn is majority-red or majority-blue.
- Publicly announces his / her guess to others.
- What's the likelihood of urn being majority-red or majority-blue?

Cascade Example

- Urn with 3 (blue or red) marbles
- A large group of participants
- Each participant:
- Draws a marble from the urn
- Looks at the color
- Places it back without showing others
- Guesses whether the urn is majority-red or majority-blue.
- Publicly announces his / her guess to others.
- majority-red : 50% chance
- majority-blue: 50% chance

Cascade Example- Cnt.

- Participants who has guessed correctly receive rewards!
- So they try to optimize their decisions!
-What should we expect to happen?

Cascade Example- Cnt.

- The First Participant
- If it's red marble
- guess majority-red;
- If it's blue marble
- guess majority-blue.
- First participant's guess conveys perfect information about what he has seen.

Cascade Example- Cnt.

- The Second Participant
- If (s)he sees the same color that the first participant announced, then
- should guess this color as well.
- sees the opposite color,
- will be indifferent
- Let's assume (s)he breaks the tie by guessing the color she saw.
- Thus, the $2^{\text {nd }}$ participant draws conveys perfect information about what (s)he has seen.

Cascade Example- Cnt.

- The Third Participant

- If the first two guessed opposite colors, then - the third should guess the color (s)he sees!
- If the first two guesses have been the sam (say both blue)
- If third participant draws blue.
- Simple!
- If third participant draws red.
- 3 draws from the urn:
- blue, blue, red. All perfect information!
- Guess that the urn is majority-blue! ignoring his own private information
- Which, taken by itself, suggested that the urn is majority-red!

Cascade Example- Cnt.

- If first two guesses are the same, the third should be the same as well, regardless of which color was drawn.
- An information cascade has begun!
- The third participant makes the same guess as the first two, regardless of his own private info!

Cascade Example- Cnt.

- The Fourth Participant and Onward!

- Let's consider just the cascade case:
- First two guesses were the same, say blue.
- $3^{\text {rd }}$ guess has to be blue too.
- $4^{\text {th }}$ participant, heard
- blue, blue, blue!
- First 2 guesses conveyed perfect info
- $3^{\text {rd }}$ guess conveys no info.
- It has to be blue no matter what (s)he saw.
- $4^{\text {th }}$ is in exactly the same situation as $3^{\text {rd! }}$

- should guess blue regardless of what (s)he sees.
- This will continue with all subsequent participants:
- If first 2 guesses were blue, then everyone will guess blue!

Cascade Example- Cnt.

Summary

- If participant 1 \& 2 make the same decision:
- All will follow this regardless of his signal.
- 3's decision conveys no info!
- Future participants will all be in the same position as participant 3 .
- In this case, a cascade has begun.

Lecture Topics

- Information Cascades
- Cascade Principles
- Simple Cascade Model

General Cascades Principles

1. Cascades can easily occur, given the right structural conditions!

- Based on very little information,
- Pre-cascade information influences the behavior of the population.

General Cascades Principles- Cnt.

2. Cascades can lead to non-optimal (wrong) outcomes!

- Say the urn is majority-red!
- Chance of the first two participants draw blue marbles is small:
- and thus all others wrongly guess blue!

General Cascades Principles- Cnt.

3. Some (but not all) cascades can be very fragile!

- Suppose first 2 guesses are blue
- Participant x and $x+1$ draw red and "show" it to others!
- $x+2$ has four pieces of perfect info:
- blue (1), blue (2), red (x), red ($x+1$)!
- Decide based on his / her own draw!

Lecture Topics

- Information Cascades
- Cascade Principles
- Simple Cascade Model

Cascade Model

- Consider a group of people ($1,2, \ldots$) who make decisions sequentially
- decision: accept or reject some option, e.g. adapting a new tech. or voting for a candidate!
- Private signal (info)
- Each individual gets a private signal indicating if accepting is a good or bad idea (not perfect).
- Two States:
- the option is a good idea (G) with probability p
- $\operatorname{Pr}[\mathrm{G}]=p$
- it's a bad idea (B) with probability 1-p.
- $\operatorname{Pr}[\mathrm{B}]=1-p$

Cascade Model- Cnt.

- Payoffs: individuals receive payoffs based on their decision to accept or reject the option
- If reject, payoff = o.
- If accept and option is a good idea, payoff $=v_{g}>0$
- If accept and option is a bad idea, payoff $=v_{b}<0$
- Expected payoff in the absence of other info is o;
- $v_{g} p+v_{b}(1-p)=0$.
- before getting any additional info, payoff from accepting is the same as the payoff from rejecting.

Sequential Decision-Making

- Let's consider the perspective of a person.
- Suppose person N knows that everyone before her has followed their own signal (accept / reject)!
- If $a=r$ (among people before N), then
- N will follow her own signal.
- N's signal will be the tie-breaker
- If $|a-r|=1$, then
- N will follow her private signal
- either N's private signal will make her indifferent or reinforce the majority signal.
If $|a-r|>=2$, then
- N follow the earlier majority \& ignore her own signal.

Sequential Decision-Making- Cnt.

Figure 16.3: A cascade begins when the difference between the number of acceptances and rejections reaches two.

Sequential Decision-Making- Cnt.

Figure 16.3: A cascade begins when the difference between the number of acceptances and rejections reaches two.

Sequential Decision-Making- Cnt.

- It is very hard for $(a-r)$ to remain in such a narrow interval (btw -1 and +1)
- For example, if 3 people in a row get the same signal, a cascade will definitely begin.

Sequential Decision-Making- Cnt.

- Claim: The probability of finding 3 matching signals in a row converges to 1 as the number of people N goes to infinity.
- Hint:
- Divide the first N people into blocks of 3 people

Sequential Decision-Making- Cnt.

- Claim: The probability of finding 3 matching signals in a row converges to 1 as the number of people N goes to infinity.
- Solution:
- Divide the first N people into blocks of 3 people
- [1, 2, 3]; [4, 5, 6]; and so on
- People in one block receive same signal with probability
- $q^{3}+(1-q)^{3}$
- The probability that none of these blocks consists of identical signals is then
- $\left[1-\left(q^{3}+(1-q)^{3}\right)\right]^{\mathrm{N} / 3}$.
- As N goes to infinity this quantity goes to 0 .

Sequential Decision-Making- Cnt.

- Different variations of the same problem:
- What if people don't see all the decisions made earlier but only some of them?
- What if private signals convey information with different level of certainty?
- What if different people receive different payoffs?

Lessons from Cascades

- The aggregate behavior of many people with limited info can produce very accurate results.
- If many people are guessing independently, then the average of their guesses is often a good estimate
- Number of jelly beans in a jar!
- Weight of a bull at a fair!

A NEW YORK TIMES BUSINESS BESTSELLER "As entertaining and thought-provoling as The Tipping Point by Makcolen Gladwell. . . . The Wiedone of Crouds ranges far and wide." -The Bontow Globe

THE WISDOM OF CROWDS

JAMES
SUROWIECKI
WITH A NEW AFTERWORD BY THE AUTHOR

Lessons from Cascades- Cnt.

- But in cascades, people guess sequentially, and
- Can observe the earlier guesses of others,
- being influenced by them,
- Conform to majority!

Lessons from Cascades- Cnt.

- Tension in collaboration
- Hiring Committee
- decide if to make a job offer to candidate A or B
- cascade may develop quickly:
- A few people initially favor A, others may conclude that they should favor A, even if they initially preferred B!
- Balancing the tension
- Ask experts to make partial decisions independently before collaboration phase!

Lessons from Cascades- Cnt.

- Marketers use the idea of cascades too!
- To initiate a buying cascade for a new product.
- Induce an initial set of people to adopt a new product,
- Other consumers later on may also adopt the product!
- Even if its worse than competing products!
- Most effective if later consumers are able to observe
- the adoption decisions (guesses),
- but, for crappy products, not how satisfied the early buyers are (ball color).

Reading

- Ch. 16 Information Cascades [NCM]

