Text Processing - Basics

Advanced Social Computing
Department of Computer Science University of Massachusetts, Lowell Fall 2020

Hadi Amiri hadi@cs.uml.edu

Lecture Topics

- Text Data
- Learning word vectors
- Word2vec
- Glove
- Evaluating word vectors
- Retrofitting word vectors

NLP - High Level

- Tokenization, OCR
- Normalization
- urls, hashtags, punctuations, numbers, dates, cases, stop words, etc.
- Spell correction
- Morphological analysis
- Stemming, lemmatization, etc.
- Syntactic analysis
- Structure of sentences
- Semantic analysis
- Meaning
- Discourse analysis
- Pragmatics and context

NLP - High Level

- Tokenization
- Normalization
- Morphology
- Syntax
- Semantic
- Discourse

Text cleaning is a very important first step!

 But there is no general rule.- Is it safe to remove punctuations or stop words from text?
- "switching from Verizon" vs.
"switching to Verizon."
- Or convert all characters to lowercase?
- "Bush" vs. "bush."
- Or remove all numbers?
- "7 yrs old" vs. "70 yrs old."
- General rule: Use the exact same cleaning technique for all competing models.

Many Interesting Applications

- Search
- Information Extraction
- Question Answering
- Machine Translation
- Summarization
- Dialogue Systems
- Text Classification
- Chatbots
- Dialog agents
- Translators
- Advertisements
- Sentiment analysis
- Stock market
- Products
- Emails: spam, not-spam.
- News articles: business, health, sports, tech, etc.
- Reviews: positive, negative, neutral.
- Word pairs: synonyms or not.
- Essays as: A, B, C, D, or F
- Etc.

Text Classification

- Let's say we have:
- A set of documents
- $\mathbf{X}=\left\{x_{1}, \ldots, x_{n}\right\}$
- A set of labels or predicted classes
- Y=\{Class-1, ..., Class-k\}
- We know the label for each document
- $\left(x_{1}, y_{1}\right), \ldots .,\left(x_{n}, y_{n}\right)$
- We aim to learn a function f (classifier) that can map inputs to their corresponding outputs
$\cdot f: \mathbf{X} \rightarrow \mathbf{Y}$

Text Classification

- Let's say we have:
- A set of documents
- $\mathbf{X}=\left\{x_{1}, \ldots, x_{n}\right\}$
- A set of labels or predicted classes
- Y=\{Class-1, ..., Class-k\}
- We know the label for each document
- $\left(x_{1}, y_{1}\right), \ldots .,\left(x_{n}, y_{n}\right)$
- We aim to learn a function f (classifier) that can map inputs to their corresponding outputs
$\cdot f: \mathbf{X} \rightarrow \mathbf{Y}$

Text Classification- Cnt.

- $\mathbf{X}=\{$ i love verizon's coverage, actually t-mobile has great deals,
i hate t-mobile! One more bill!!,
i cant take it anymore! hate verizon\}
- $\mathbf{Y}=\{+1,-1\}$

positive

Text Classification- Cnt.

- $\mathbf{X}=\{$ i love verizon's coverage, actually t-mobile has great deals, i hate t-mobile! One more bill!!, i cant take it anymore! hate verizon\}
- $\mathbf{Y}=\{+1,-1\}$
- $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{4}, y_{4}\right)\right\}=$ \{(i love verizon's coverage, +1),
(actually t-mobile has great deals, +1),
(i hate t-mobile! One more bill!, -1),
(i cant take it anymore! hate verizon, -1) \}

Text Classification- Cnt.

- $\mathbf{X = \{}$ i love verizon's coverage, actually t-mobile has great deals, i hate t-mobile! One more bill!!, i cant take it anymore! hate verizon\}
- $\mathbf{Y}=\{+1,-1\}$
- f (i love verizon's coverage

$$
)=+1
$$

- f (actually t-mobile has great deals

$$
)=+1
$$

- f (i hate t-mobile! One more bill!!

$$
)=-1
$$

- $f($ i cant take it anymore! hate verizon $)=-1$

Classification: the output variable takes class labels, i.e. $Y=\{-1,+1\}$ Regression: the output variable takes continuous values, i.e. $\mathrm{Y}=[-1,+1]$.

Why do we need to learn f ?

Text Classification- Cnt.

How can we determine f ?

How can we determine f

- Given $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$, we aim to find $f($.)!
- An ideal $f($.) is a function such that

${ }^{\circ}$ Hard to find, why?
-We just expect $f\left(x_{i}\right)$ to be very close to y_{i}.

y	$f(x)$	error $=(y-f(x))^{2}$
---1	+1	0
-1	-1	0
+1	-1	4
-1	+1	4

Loss function

$$
\begin{aligned}
& l\left(y_{i}, f\left(x_{i}\right)\right)=\left(y_{i}-f\left(x_{i}\right)\right)^{2} \\
& \sum_{i} l\left(y_{i}, f\left(x_{i}\right)\right)=\sum_{i}\left(y_{i}-f\left(x_{i}\right)\right)^{2}
\end{aligned}
$$

zero error when prediction and actual label are the same,
Non-zero, otherwise!

How can we determine f - Cnt.

- Given $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ we aim to find a function $f($.$) that minimizes the error$

$$
L(x, y)=\sum_{i}^{n} l\left(y_{i}, f\left(x_{i}\right)\right)
$$

- Three popular loss functions
- Squared loss (linear classifier)
- Hinge loss (the SVMs),
- Logistic loss (logistic classifier)

How can we determine f - Cnt.

- Three popular loss functions $\quad L(x, y)=\sum_{i}^{n} l\left(y_{i}, f\left(x_{i}\right)\right)$ - Squared loss (linear classifier)

$$
L(x, y)=\sum_{i}^{n} l\left(y_{i}, f\left(x_{i}\right)\right)
$$

$$
l(y, f(x))=(y-f(x))^{2}
$$

- Hinge loss (the SVMs)

$$
l(y, f(x))=\max (0,1-y \cdot f(x))
$$

- Logistic loss (logistic classifier)

$$
l(y, f(x))=\log (1+\exp (-y \cdot f(x)))
$$

Text Representation

- What is a good way to represent the input text?

Text Representation- Cnt.

- Features
-How to classify objects such as People and Cars?

- We use features / characteristics of those objects!

Text Representation- Cnt.

- Knowledge about features that make good predictors of class membership!
- having wheels or not distinguishes people from cars, but doesn't distinguish cars from planes.

Text Representation- Cnt.

- $\mathbf{X = \{}$ i would love verizon coverage, i hate verizon one more bill, i hate verizon\}
- $\mathbf{Y}=\{+1,-1\}$
- Features=[i, would, love, verizon, coverage, hate, one, more, bill]

Text Representation- Cnt.

- $\mathbf{X}=\{$ i would love verizon coverage, i hate verizon one more bill, i hate verizon\}
- $\mathbf{Y}=\{+1,-1\}$

Bag of Word representation

- Features=[i, would, love, verizon, coverage, hate, one, more, bill]

Feature Weights

	i	would	love	verizon	coverage	hate	one	more	bill
X_{1}	1	1	1	1	1	0	0	0	0
X_{2}	1	0	0	1	0	1	1	1	1
X_{3}	1	0	0	1	0	1	0	0	0

Text Representation- Cnt.

- Bag of Word representation
- $\mathbf{X = \{}$ i would love verizon coverage, i hate verizon one more bill, i hate verizon\}
- $\mathbf{Y}=\{+1,-1\}$
- Features=\{would, love, hate\}

	would	love	hate
X_{1}	$\mathbf{1}$	$\mathbf{1}$	\mathbf{O}
X_{2}	O	O	$\mathbf{1}$
X_{3}	\mathbf{O}	O	$\mathbf{1}$

Text Representation- Cnt.

- Other ways of representation?
- Other ways to set weights?
- How to encode semantics?
- Suggest \& recommend
- Pretty \& beautiful
- Etc.

Vowpal Wabbit (VW)

- Vowpal Wabbit:
- Fast learning
- Simplicity
- Namespace definition
- Easy Ablation Analysis

http://hunch.net/~vw/

Label [Importance] [Base] ['Tag] |Namespace Feature ... |Namespace Feature ...
Namespace = A letter like 'a', 'b', 'c', ...
Feature $=$ String[:Float]

Vowpal Wabbit (VW)

- Vowpal Wabbit:
- Fast learning
- Simplicity
- Namespace definition
- Easy Ablation Analysis
+1 |a i would love verizon coverage
-1 |a i hate verizon one more bill
-1 |a i hate verizon
|b would love |b hate
|b hate

Vowpal Wabbit (VW)

- Vowpal Wabbit:
- Fast learning
- Simplicity
- Namespace definition
- Easy Ablation Analysis

Namespace a
Namespace b

Test and Training Data

Test and Training Data- Cnt.

- How to create test and training data?
- Use k-fold cross validation, $\mathrm{k}=3$ or 5

- Commonty-used evaluation metrics

Scoring	Function	Comment
Classification		
'accuracy'	metrics.accuracy_score	
'balanced_accuracy'	metrics.balanced_accuracy_score	
'average_precision'	metrics.average_precision_score	
'neg_brier_score'	metrics.brier_score_loss	
'f1'	metrics.f1_score	for binary targets
'f1_micro'	metrics.f1_score	micro-averaged
'f1_macro'	metrics.f1_score	macro-averaged
'f1_weighted'	metrics.f1_score	weighted average
'f1_samples'	metrics.f1_score	by multilabel sample
'neg_log_loss'	metrics.log_loss	requires predict_proba support
'precision' etc.	metrics.precision_score	suffixes apply as with 'f1'
'recall' etc.	metrics.recall_score	suffixes apply as with 'f1'
'jaccard' etc.	metrics.jaccard_score	suffixes apply as with 'f1'
'roc_auc'	metrics.roc_auc_score	
'roc_auc_ovr'	metrics.roc_auc_score	
'roc_auc_ovo'	metrics.roc_auc_score	
'roc_auc_ovr_weighted'	metrics.roc_auc_score	
'roc_auc_ovo_weighted'	metrics.roc_auc_score	
Clustering		
'adjusted_mutual_info_score'	metrics.adjusted_mutual_info_score	
'adjusted_rand_score'	metrics.adjusted_rand_score	
'completeness_score'	metrics.completeness_score	
'fowlkes_mallows_score'	metrics.fowlkes_mallows_score	
'homogeneity_score'	metrics.homogeneity_score	
'mutual_info_score'	metrics.mutual_info_score	
'normalized_mutual_info_score'	metrics.normalized_mutual_info_score	
'v_measure_score'	metrics.v_measure_score	
Regression		
'explained_variance'	metrics.explained_variance_score	
'max_error'	metrics.max_error	
'neg_mean_absolute_error'	metrics.mean_absolute_error	
'neg_mean_squared_error'	metrics.mean_squared_error	
'neg_root_mean_squared_error'	metrics.mean_squared_error	
'neg_mean_squared_log_error'	metrics.mean_squared_log_error	
'neg_median_absolute_error'	metrics.median_absolute_error	

Evaluation - Cnt.

- Precision, Recall, F1-Score

F1 is the harmonic mean of precision and recall

Evaluation - Cnt.

- Precision, Recall, F1-Score

F1 is the harmonic mean of precision and recall

In which applications precision or recall is more important than the other?

Quick Reference

Questions?

