Text Processing - Basics

Advanced Social Computing

Department of Computer Science University of Massachusetts, Lowell Fall 2020

Hadi Amiri hadi@cs.uml.edu

Lecture Topics

Text Data

- Learning word vectors
 - Word2vec
 - Glove
- Evaluating word vectors
- Retrofitting word vectors

NLP – High Level

- Tokenization, OCR
- Normalization
 - urls, hashtags, punctuations, numbers, dates, cases, stop words, etc.
 - Spell correction
- Morphological analysis
 - Stemming, lemmatization, etc.
- Syntactic analysis
 - Structure of sentences
- Semantic analysis
 - Meaning
- Discourse analysis
 - Pragmatics and context

NLP — High Level

- Tokenization
- Normalization
- Morphology
- Syntax
- Semantic
- Discourse

Text cleaning is a very important first step! But there is no general rule.

- Is it safe to remove punctuations or stop words from text?
 - "switching from Verizon" vs.
 "switching to Verizon."
- Or convert all characters to lowercase?
 - "Bush" vs. "bush."
- Or remove all numbers?
 - "7 yrs old" vs. "70 yrs old."
- General rule: Use the exact same cleaning technique for all competing models.

Many Interesting Applications

- Search
- Information Extraction
- Question Answering
- Machine Translation
- Summarization
- Dialogue Systems
- Text Classification
 - Emails: spam, not-spam.
 - News articles: business, health, sports, tech, etc.
 - Reviews: positive, negative, neutral.
 - Word pairs: synonyms or not.
 - Essays as: A, B, C, D, or F
 - Etc.

- Chatbots
- Dialog agents
- Translators
- Advertisements
- Sentiment analysis
 - Stock market
 - Products

Text Classification

- Let's say we have:
 - A set of documents

•
$$X = \{x_1, ..., x_n\}$$

A set of labels or predicted classes

We know the label for each document

Input

•
$$(x_1,y_1),...,(x_n,y_n)$$

- We aim to learn a function f (classifier) that can map inputs to their corresponding outputs
 - $\cdot f: X \to Y$

Text Classification

- Let's say we have:
 - A set of documents

•
$$X = \{x_1, ..., x_n\}$$

A set of labels or predicted classes

We know the label for each document

Input

- $(x_1,y_1),...,(x_n,y_n)$
- We aim to learn a function f (classifier) that can map inputs to their corresponding outputs

$$\cdot f: X \to Y$$

Text Classification- Cnt.

• X={ i love verizon's coverage, actually t-mobile has great deals, i hate t-mobile! One more bill!!, i cant take it anymore! hate verizon}

- X={ i love verizon's coverage, actually t-mobile has great deals, i hate t-mobile! One more bill!!, i cant take it anymore! hate verizon}
- $Y = \{+1, -1\}$

```
• \{(x_1, y_1), (x_2, y_2), \dots, (x_4, y_4)\} = \{(i \text{ love verizon's coverage, } +1), (actually t-mobile has great deals, +1), (i \text{ hate t-mobile! One more bill!!, } -1), (i \text{ cant take it anymore! hate verizon, } -1)\}
```

Text Classification- Cnt.

- X={ i love verizon's coverage, actually t-mobile has great deals, i hate t-mobile! One more bill!!, i cant take it anymore! hate verizon}
- $Y = \{+1, -1\}$
- f (i love verizon's coverage) = +1
- f(actually t-mobile has great deals) = +1
- f (i hate t-mobile! One more bill!!) = -1
- f (i cant take it anymore! hate verizon) = -1

Classification: the output variable takes class labels, i.e. $Y=\{-1,+1\}$ **Regression**: the output variable takes continuous values, i.e. Y=[-1,+1].

Why do we need to learn *f*?

Text Classification- Cnt.

11

How can we determine f

- Given $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$, we aim to find f(.)!
- An ideal *f*(.) is a function such that

$$\neg f(x_i) = y_i \text{ for all } i$$

- Hard to find, why?
- We just expect $f(x_i)$ to be very close to y_i .

y	f(x)	$error = (y - f(x))^2$
+1	+1	O
-1	-1	0
+1	-1	4
-1	+1	4

Loss function

$$l(y_i, f(x_i)) = (y_i - f(x_i))^2$$
$$\sum_{i} l(y_i, f(x_i)) = \sum_{i} (y_i - f(x_i))^2$$

zero error when prediction and actual label are the same, Non-zero, otherwise!

How can we determine f- Cnt.

• Given $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ we aim to find a function f(.) that minimizes the error

$$L(x,y) = \sum_{i}^{n} l(y_i, f(x_i))$$

- Three popular loss functions
 - Squared loss (linear classifier)
 - Hinge loss (the SVMs),
 - Logistic loss (logistic classifier)

How can we determine f- Cnt.

• Three popular loss functions $L(x,y) = \sum l(y_i, f(x_i))$

$$L(x,y) = \sum_{i} l(y_i, f(x_i))$$

Squared loss (linear classifier)

$$l(y, f(x)) = (y - f(x))^2$$

Hinge loss (the SVMs)

$$l(y, f(x)) = max(0, 1 - y.f(x))$$

Logistic loss (logistic classifier)

$$l(y, f(x)) = log(1 + exp(-y.f(x)))$$

Text Representation

What is a good way to represent the input text?

Text Representation- Cnt.

- Features
 - How to classify objects such as **People** and **Cars**?

We use features / characteristics of those objects!

- Knowledge about features that make good predictors of class membership!
 - having wheels or not distinguishes people from cars, but doesn't distinguish cars from planes.

- X={ i would love verizon coverage, i hate verizon one more bill, i hate verizon}
- $Y = \{+1, -1\}$

Bag of Word representation

• Features=[i, would, love, verizon, coverage, hate, one, more, bill]

- X={ i would love verizon coverage, i hate verizon one more bill, i hate verizon}
- $Y = \{+1, -1\}$

Bag of Word representation

• Features=[i, would, love, verizon, coverage, hate, one, more, bill]

Feature Weights

	i	would	love	verizon	coverage	hate	one	more	bill
X_1	1	1	1	1	1	0	0	0	0
X_2	1	O	0	1	0	1	1	1	1
X_3	1	0	0	1	0	1	0	0	O

Text Representation- Cnt.

- Bag of Word representation
- X={ i would love verizon coverage, i hate verizon one more bill, i hate verizon}
- $Y = \{+1, -1\}$

Sentiment Words

• Features={would, love, hate}

	would	love	hate
X_1	1	1	0
X_2	O	0	1
X_3	O	0	1

Text Representation- Cnt.

Other ways of representation?

Other ways to set weights?

- How to encode semantics?
 - Suggest & recommend
 - Pretty & beautiful
 - Etc.

Vowpal Wabbit (VW)

- Vowpal Wabbit:
 - Fast learning
 - Simplicity
 - Namespace definition
 - Easy Ablation Analysis

http://hunch.net/~vw/

Label [Importance] [Base] ['Tag] | Namespace Feature ... | Namespace Feature ...

Namespace = A letter like 'a', 'b', 'c', ... Feature = String[:Float]

Vowpal Wabbit (VW)

- Vowpal Wabbit:
 - Fast learning
 - Simplicity
 - Namespace definition
 - Easy Ablation Analysis

```
+1 |a i would love verizon coverage |b would love

-1 |a i hate verizon one more bill |b hate

-1 |a i hate verizon |b hate
```

Vowpal Wabbit (VW)

- Vowpal Wabbit:
 - Fast learning
 - Simplicity
 - Namespace definition

Namespace a

Easy Ablation Analysis

Label	Features of a	Features of b
	a i would love verizon coverage a i hate verizon one more bill a i hate verizon	b would love b hate b hate

Namespace b

24

Test and Training Data

Test and Training Data- Cnt.

- How to create test and training data?
 - □ Use k-fold cross validation, k=3 or 5

Commonly-used evaluation metrics

Scoring	Function	Comment
Classification	Turiotion	Comment
'accuracy'	metrics.accuracy score	
'balanced_accuracy'	metrics.balanced_accuracy_score	
'average_precision'	metrics.average_precision_score	
'neg_brier_score'	metrics.brier_score_loss	
'f1'	metrics.fl_score	for binary targets
'f1_micro'	metrics.fl score	micro-averaged
'f1_macro'	metrics.fl_score	macro-averaged
'f1_weighted'	metrics.fl_score	weighted average
'f1_samples'	metrics.fl score	by multilabel sample
'neg_log_loss'	metrics.log_loss	requires predict_proba support
'precision' etc.	metrics.precision_score	suffixes apply as with 'f1'
'recall' etc.	metrics.recall score	suffixes apply as with 'f1'
'jaccard' etc.	metrics.jaccard_score	suffixes apply as with 'f1'
'roc_auc'	metrics.roc_auc_score	
'roc_auc_ovr'	metrics.roc_auc_score	
'roc_auc_ovo'	metrics.roc_auc_score	
'roc_auc_ovr_weighted'	metrics.roc_auc_score	
'roc_auc_ovo_weighted'	metrics.roc_auc_score	
Clustering		
'adjusted_mutual_info_score'	metrics.adjusted_mutual_info_score	
'adjusted_rand_score'	metrics.adjusted_rand_score	
'completeness_score'	metrics.completeness_score	
'fowlkes_mallows_score'	metrics.fowlkes_mallows_score	
'homogeneity_score'	metrics.homogeneity_score	
'mutual_info_score'	metrics.mutual_info_score	
'normalized_mutual_info_score'	metrics.normalized_mutual_info_score	
'v_measure_score'	metrics.v_measure_score	
Regression		
'explained_variance'	metrics.explained_variance_score	
'max_error'	metrics.max_error	
'neg_mean_absolute_error'	metrics.mean_absolute_error	
'neg_mean_squared_error'	metrics.mean_squared_error	
'neg_root_mean_squared_error'		
'neg_mean_squared_log_error'	metrics.mean_squared_log_error	
'neg_median_absolute_error'	metrics.median_absolute_error	

Precision, Recall, F1-Score

relevant elements

F1 is the harmonic mean of precision and recall

Evaluation — Cnt.

Precision, Recall, F1-Score

relevant elements

F1 is the harmonic mean of precision and recall

In which applications precision or recall is more important than the other?

Questions?

