Network Basics 1

Advanced Social Computing

Department of Computer Science University of Massachusetts, Lowell Spring 2020

Hadi Amiri hadi@cs.uml.edu

Lecture Topics

- Graph Theory
 - Node degree
 - Graph density
 - Complete Graph
 - Distance and Diameter
 - Adjacency matrix
 - Graph Connectivity
 - Reachability
 - Sub-graphs
 - Graph Types

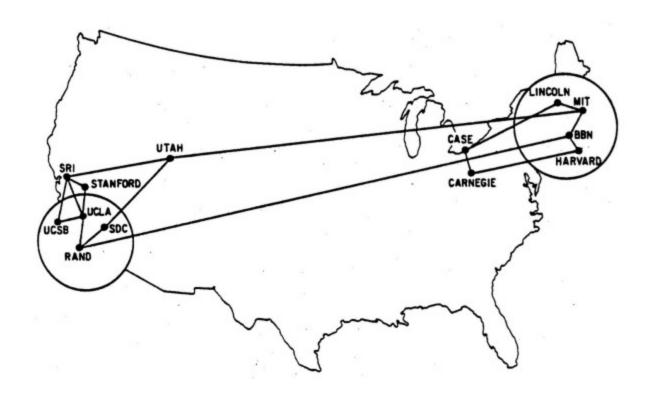
Terminology

- Graph terminology is often derived from transportation metaphors
 - E.g. "shortest path", "flow", "diameter"

- Abstract graph theory is interesting in itself
- But in network science, items typically represent real-world entities
 - Examples
 - Communication networks
 - Companies, telephone wires
 - Social networks
 - People, friendship/contacts
 - Information networks
 - Web sites, hyperlinks

Graphs as Models of Networks - Cnt.

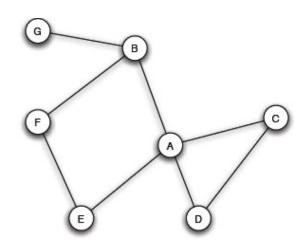
- ARPANET: Early Internet precursor
- December 1970 with 13 nodes



Basic Graph Concepts

Graph Theory

- A graph consists of
 - N: a set of nodes (items, entities, people, etc), and
 - E: a set of links or edges between nodes
- Graph is a way to **specify relationships** / links amongst a set of nodes.
- We define
 - $N=|N| \rightarrow \text{ size of } N$
 - $E=|E| \rightarrow \text{ size of } E$

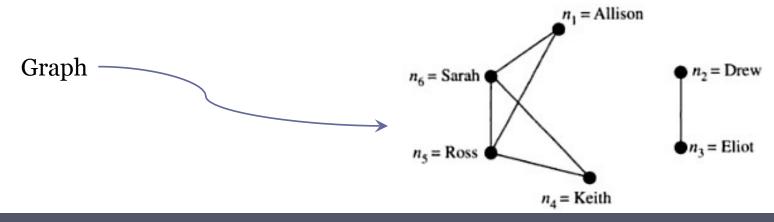


- Nodes i and j are adjacent or neighbors if:
 - There is an edge btw them!
 - $\cdot i \in \mathbb{N}$
 - $\cdot j \in \mathbb{N}$
 - $(i,j) \in \mathbf{E}$

Lives near:

Actor

Ross, Sarah Allison n_1 "Lives Near" Graph Eliot Drew 12 Drew Eliot 113 Ross, Sarah Keith 114 Allison, Keith, Sarah Ross 115 Sarah Allison, Keith, Ross n_6 nodes $l_1 = (n_1, n_5)$ $l_2 = (n_1, n_6)$ $l_3 = (n_2, n_3)$ Links or edges $l_4 = (n_4, n_5)$ $l_5 = (n_4, n_6)$ $l_6 = (n_5, n_6)$



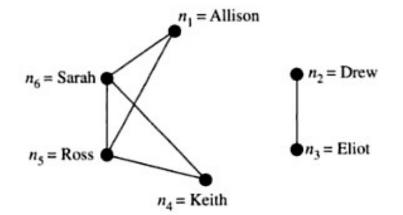
Node Degree *d*(*i*)

UMASS

- Given Node *i*, its degree d(i) is:
 - the number nodes adjacent to it.

	Actor	Lives near:	Degree
nı	Allison	Ross, Sarah	2
n ₂	Drew	Eliot	1
n ₃	Eliot	Drew	1
n4	Keith	Ross, Sarah	2
n ₅	Ross	Allison, Keith, Sarah	3
n_6	Sarah	Allison, Keith, Ross	3

```
l_1 = (n_1, n_5)
l_2 = (n_1, n_6)
l_3 = (n_2, n_3)
l_4 = (n_4, n_5)
l_5 = (n_4, n_6)
l_6 = (n_5, n_6)
```



Graph Density

How many edges are possible?

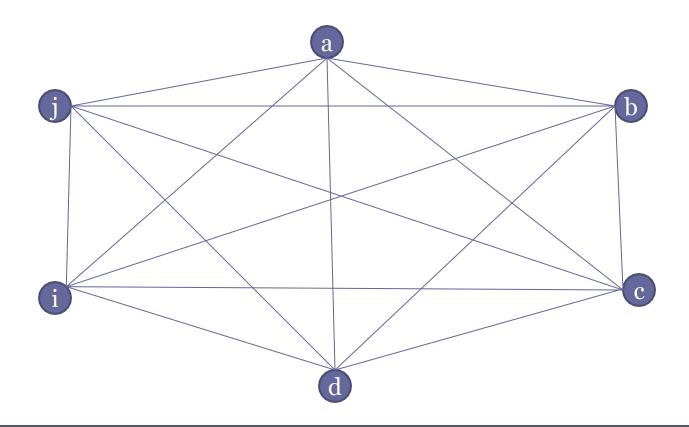
j

b

A

c

•
$$(N-1) + (N-2) + (N-3) + ... + 1 = N * (N-1) / 2$$



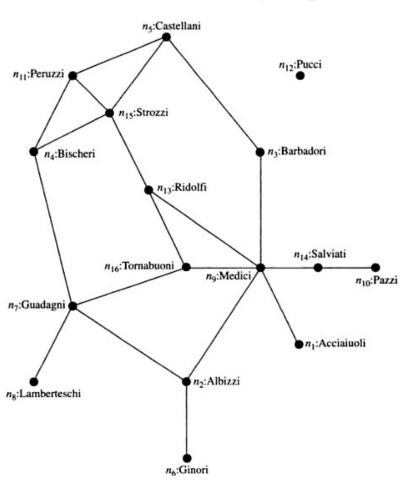
Graph Density- Cnt.

- Graph Density of a given graph G is determined by:
 - the proportion of all possible edges that are present in the graph.
 - with N nodes and E edges, graph density is:

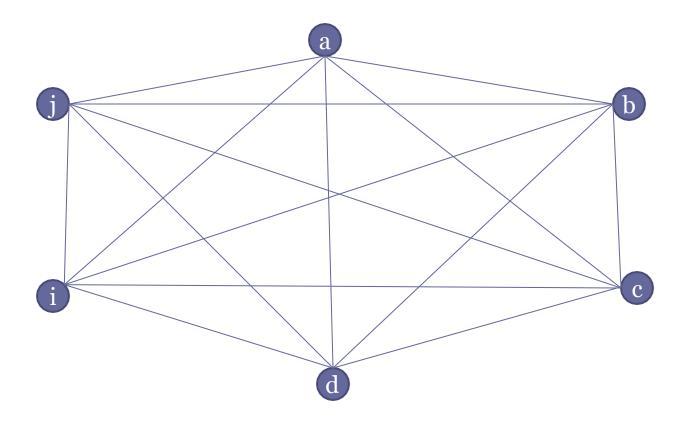
Density =
$$2 * E / N * (N-1)$$

Graph Density- Cnt.

What is the density of this graph?



• If all edges are present, then all nodes are adjacent (neighbors), and the graph is a *Complete Graph*.

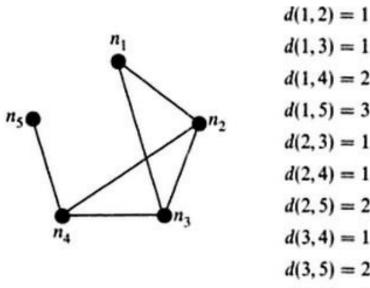


What is the density of a complete graph?

Distance and Diameter

- Distance btw node i and j: d(i,j)
 - length of the **shortest path** between i and j
- Diameter of a graph
 - the maximum value of d(i,j) for all i and j

The path with min number of edges.



d(1,3) = 1d(1,4) = 2

distance

$$d(1,5)=3$$

$$d(2,3) = 1$$

$$d(2,4) = 1$$

$$d(2,5)=2$$

$$d(3,4) = 1$$

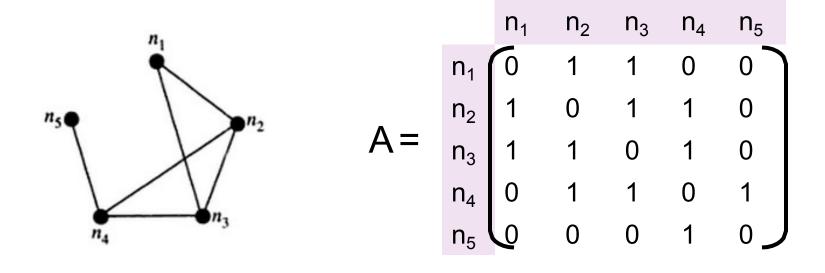
$$d(3,5) = 2$$

$$d(4,5) = 1$$

Diameter of graph = max d(i, j) = d(1, 5) = 3

What is the distance and diameter of a complete graph?

Adjacency Matrix



Each row or column represents a node!

$$A = A^{T}$$

Properties of adjacency matrix → next session

Graph Connectivity

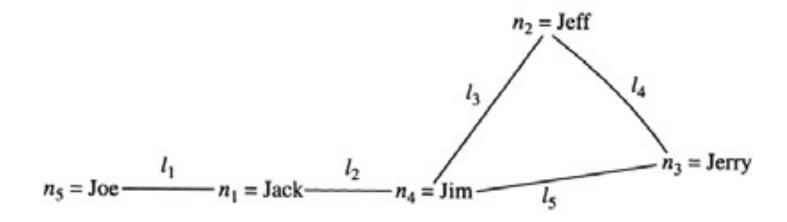
- Indirect connections between nodes:
 - Walks
 - Trails
 - Paths

Graph Connectivity- Cnt.

- Walk
 - A sequence of nodes and edges that starts and ends with nodes where each node is incident to the edges following and preceding it.
- Trail
 - A trail is a walk with distinct edges
- Path
 - A path is a walk with distinct nodes & edges.
- The length of a walk, trail, or path is the number of edges in it.

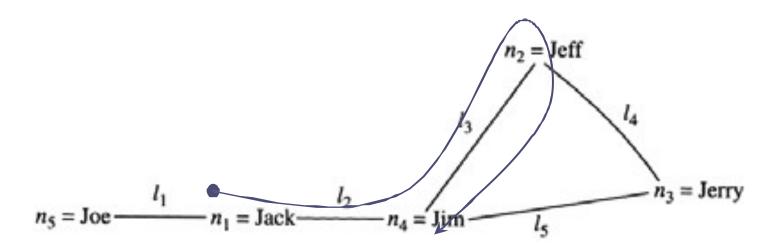
Walk

 A sequence of nodes and edges that starts and ends with nodes where each node is incident to the edges following and preceding it.



Walk

 A sequence of nodes and edges that starts and ends with nodes where each node is incident to the edges following and preceding it.

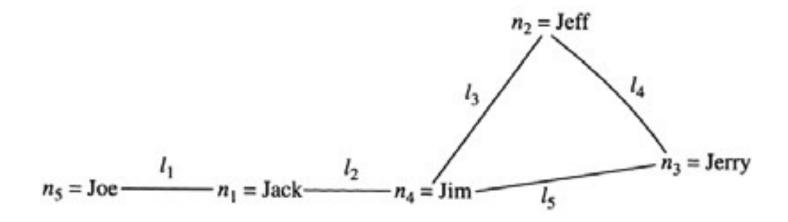


Sample Walk:

$$W=n_1 l_2 n_4 l_3 n_2 l_3 n_4$$

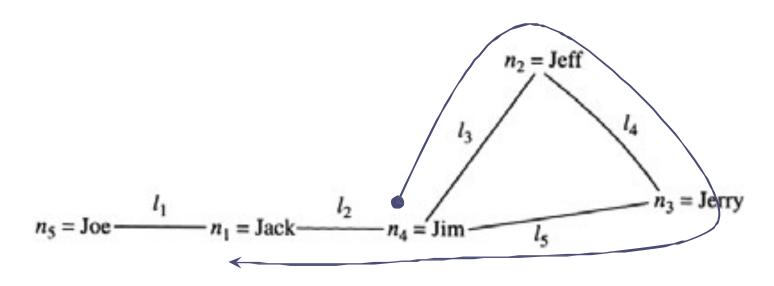
Trail

 A trail is a walk in which all edges are distinct, although some node(s) may be included more than once.



Trail

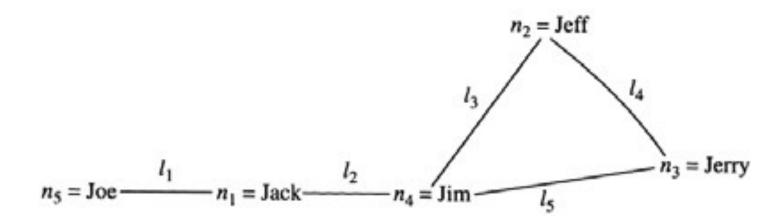
 A trail is a walk in which all edges are distinct, although some node(s) may be included more than once.



Sample Trail: $T=n_4 l_3 n_2 l_4 n_3 l_5 n_4 l_2 n_1$

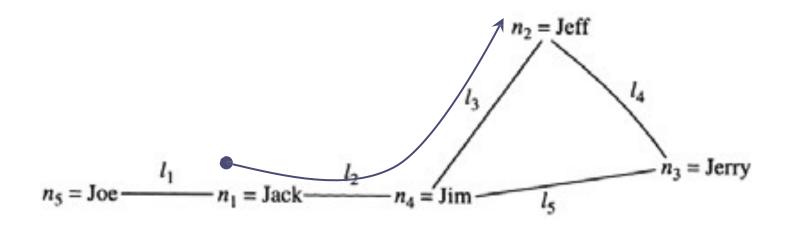
Path

 A path is a walk in which all nodes and all edges are distinct.



Path

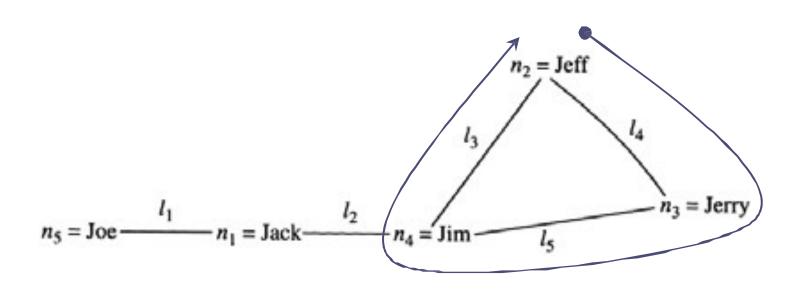
 A path is a walk in which all nodes and all edges are distinct.



Sample Path:

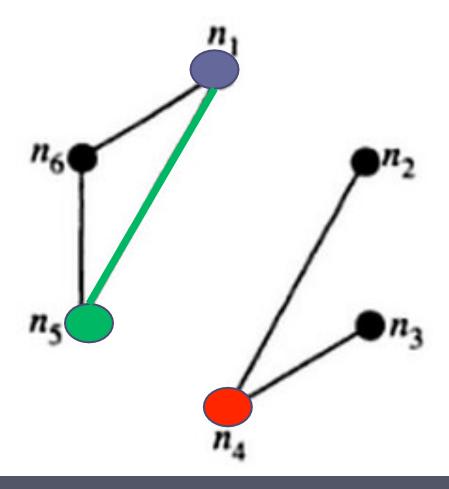
$$P=n_1 l_2 n_4 l_3 n_2$$

- Is this a Walk? Trail? Path?
 - We call a *closed walk* with distinct nodes & edges
 Cycle!



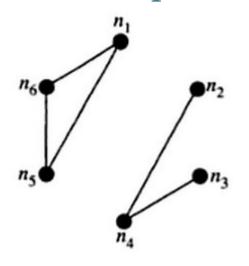
$$n_2 l_4 n_3 l_5 n_4 l_3 n_2$$

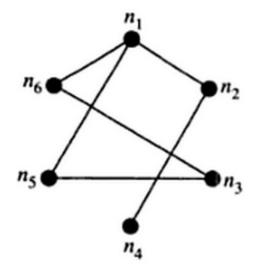
• If there is a **path between nodes** *i* and *j*, then *i* and *j* are reachable from each other.



Connected Graph

- A graph is connected if **every pair of its nodes** are reachable from each other
 - i.e. there is a path between them.





Disconnected Graph

How can we make this graph connected?

Connected Graph

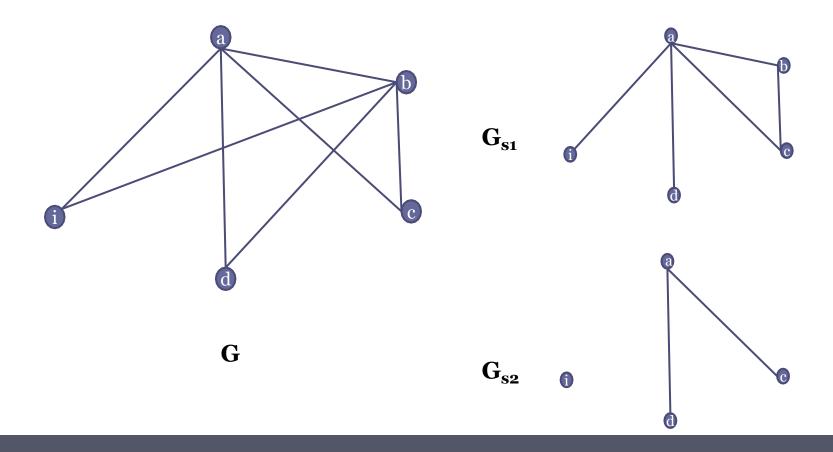
and this graph disconnected?

Sub-graphs

• Graph G_s is a sub-graph of G if its nodes and edges are a subset of G's nodes and edges respectively.

Sub-graphs- Cnt.

• Graph G_s is a sub-graph of G if its nodes and edges are a subset nodes and edges of G respectively.

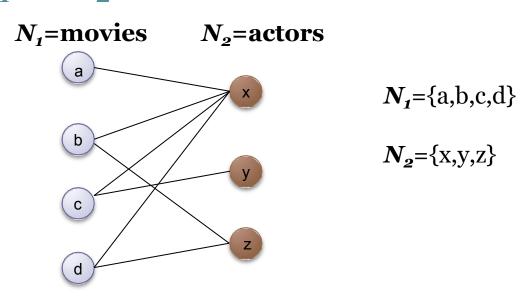


Graph Types

- Several types of graphs:
 - Bipartite graphs
 - Digraphs
 - Multigraphs
 - Hypergraphs
 - Weighted/Signed

Graph Types- Bipartite Graphs

- A bipartite graph is an undirected graph in which
 - nodes can be partitioned into two (disjoint) sets N_1 and N_2 such that:
 - $(u, v) \in E$ implies either $u \in N_1$ and $v \in N_2$ or vice versa
 - So, all edges go between the two sets N_1 and N_2 but not within N_1 or N_2 .



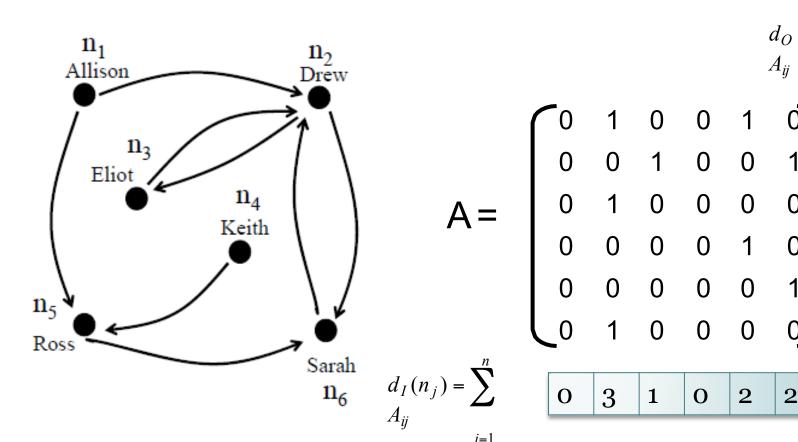
Graph Types- Digraphs

- Digraphs or Directed Graphs
 - Edges are directed
- Adjacency:
 - There is a direct edge btw nodes!
 - $\cdot i \in N$
 - $\cdot j \in \mathbb{N}$
 - $(i,j) \in E$

Graph Types- Digraphs- Cnt.

- Node Indegree and Outdegree
 - Indegree
 - The indegree of a node, $d_I(i)$, is the number of nodes that link to i,
 - Outdegree
 - The outdegree of a node, $d_O(i)$, is the number of nodes that are linked by i,
- Indegree: number of edges terminating at *i*.
- Outdegree: number of edges originating at *i*.

Graph Types- Digraphs- Cnt.



$$d_{O}(n_{i}) = \sum_{A_{ij}}^{n} A_{ij}$$

$$0$$

$$1$$

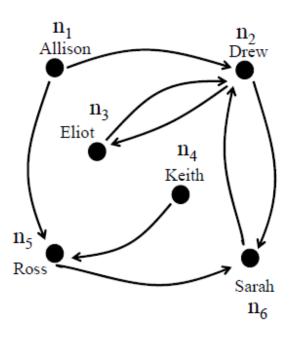
$$0$$

$$1$$

$$1$$

$$1$$

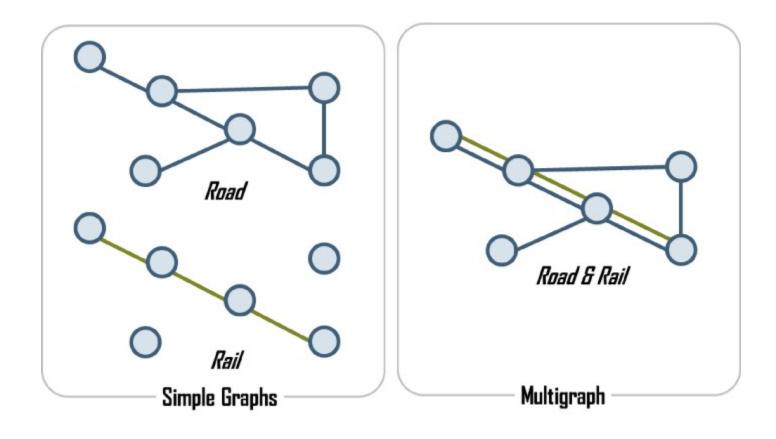
- Density of Digraph:
 - Number of all possible edges in Digraph?



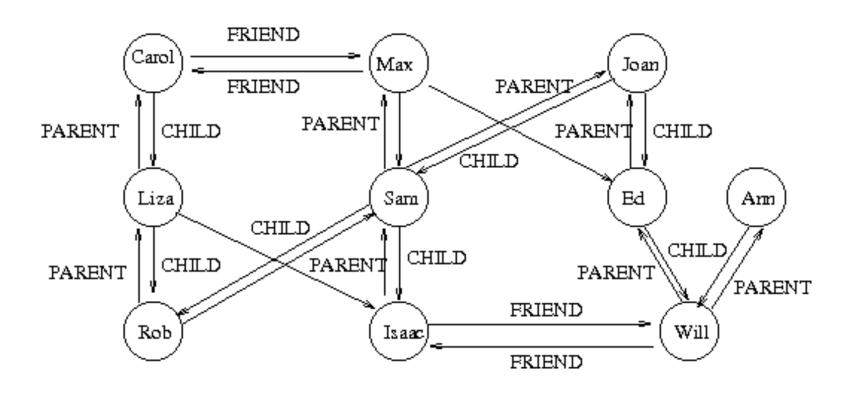
- Connectivity
 - Walks
 - Trails
 - Paths
- The same as before just links are directed!

Graph Types- Multigraphs

- A Multigraph (or multivariate graph) G consists of:
 - a set of nodes, and
 - two or more sets of edges, $E^+ = \{E_1, E_2, ..., E_r\}$, r is the number of edge sets.



Multigraph 2.



Graph Types- Multigraphs- Cnt.

- Each E_i indicated one type of relationship, e.g.:
 - E_1 : lives near relationship
 - E_2 : friends at the beginning of the year
 - E_3 : friends at the end of the year

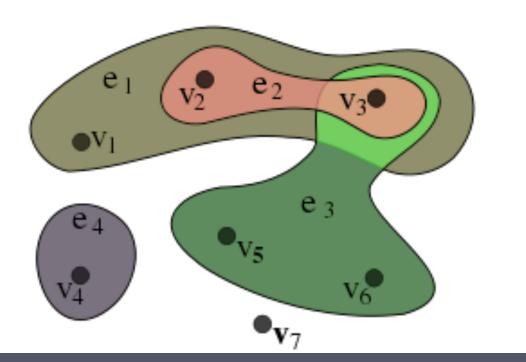
Graph Types- Multigraphs- Cnt.

- Number of edges btw any two nodes in a multigraph?
 - $E^+ = \{E_1, E_2, ..., E_r\}, r \text{ is the number of sets of edges}$
 - Undirected multigraph
 - [0, r]
 - Directed multigraph
 - · [0, 2*r]

- A hypergraph is a graph in which an edge can connect any number of nodes.
- In a hypergraph, *E* is a set of non-empty subsets of *N* called *hyperedges*.

Graph Types- Hypergraphs- Cnt.

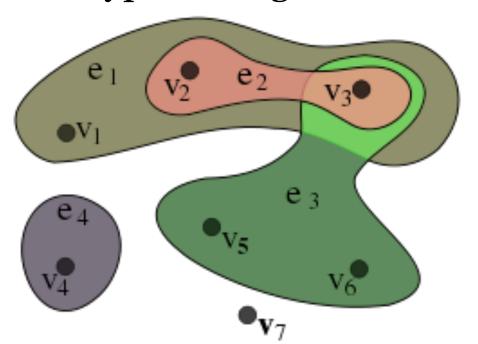
- A hypergraph is a graph in which an edge can connect any number of nodes.
- In a hypergraph, *E* is a set of non-empty subsets of *N* called *hyperedges*.



$$\begin{split} \mathbf{N} &= \{\mathbf{v}_1,\,\mathbf{v}_2,\,\mathbf{v}_3,\,\mathbf{v}_4,\,\mathbf{v}_5,\,\mathbf{v}_6,\,\mathbf{v}_7\} \\ \mathbf{E} &= \{\mathbf{e}_1,\,\mathbf{e}_2,\,\mathbf{e}_3,\,\mathbf{e}_4\} = \\ &\{ \{\mathbf{v}_1,\,\mathbf{v}_2,\,\mathbf{v}_3\},\,\{\mathbf{v}_2,\,\mathbf{v}_3\},\,\{\mathbf{v}_3,\,\mathbf{v}_5,\,\mathbf{v}_6\},\,\{\mathbf{v}_4\}\} \end{split}$$

Graph Types- Hypergraphs- Cnt.

- Applications:
 - Recom. systems (communities as edges),
 - Image retrieval (correlations as edges),
 - Bioinformatics (interactions or semantic types as edges).



$$\mathbf{N} = \{ \mathbf{v}_1, \, \mathbf{v}_2, \, \mathbf{v}_3, \, \mathbf{v}_4, \, \mathbf{v}_5, \, \mathbf{v}_6, \, \mathbf{v}_7 \}$$

$$\mathbf{E} = \{e_1, e_2, e_3, e_4\} =$$

$$\{\{v_1, v_2, v_3\}, \{v_2, v_3\}, \{v_3, v_5, v_6\}, \{v_4\}\}$$

Weighted/Signed Graphs

- Edges may carry additional information
 - □ Tie strength → how good are two nodes as friends?
 - □ Distance → how long is the distance btw two cities?
 - Delay → how long does the transmission take btw two cities?
 - □ Signs → two nodes are friends or enemies?

Reading

- Ch.o2 Graphs [NCM]
- Ch. 22 Elementary Graph Algorithms [CLRS]