# **Churn Prediction**

Advanced Social Computing

Department of Computer Science University of Massachusetts, Lowell Spring 2020

Hadi Amiri <u>hadi@cs.uml.edu</u>



# Lecture Topics

Churn Prediction

### **Brandtology**

The science of studying brands and their customers in social media.



#### Churn Prediction in Social Media: How can we identify churny content in social media?



#### **TWITTER** The Fastest Growing Social Platform



## **Twitter Active Users**

**33%** asked friend's **opinion** about a product

**26% bought** a product or service

**29% complained** about a brand or product

**27% recommended** a brand or product

**33% followed** a group created by a brand

**25% used an app** created by a brand

**30% shared photos** about a brand

**30% shared video** created by a brand

Important to extract *insights* form valuable user generated content about brands!

# Brands in SM







#### Figure 27a: Organizational Plans to Leverage Social Media Metrics Into Business Processes



# Brands in SM





#### Figure 33: Top Business Processes Leveraging Social Media Data



## Large-scale Data

# 779 K

![](_page_8_Picture_2.jpeg)

Customer Support for Verizon Wireless. ?'s about your wireless service, device, features, etc. we're here to assist. 7 days a week from 7am - 2am CST

community.verizonwireless.com

# 599 K

![](_page_8_Picture_6.jpeg)

#### American Airlines 📀

@AmericanAir

Thanks for checking in! We're here to offer advice and inspiration for your trip on American. Please click here if you require a formal response to a complaint:

it Iv/A ACD1

## Large-scale Data

![](_page_9_Figure_1.jpeg)

• Slang and words not in dictionaries

- Slang and words not in dictionaries
  - Tomorrow: 2m, 2ma, 2mar, 2mara, 2maro, 2marrow, 2mor, 2mora, 2moro, 2morow, 2morr, 2morro, 2morrow, 2moz, 2mr, 2mro, 2mrrw, 2mrw, 2mw, tmmrw, tmo, tmoro, tmorrow, tmoz, tmr, tmro, tmrow, tmrrow, tmrrw, tmrw, tmw, tomaro, tomarow, tomarro, tomarrow, tomr, tomarow, tomarrow, tommoro, tommorow, tomm, tommorw, tommorw, tommrow, tomo, tomolo, tomoro, tomorow, tomorro!

- Slang and words not in dictionaries
  - Difference control in the second seco
- Tweets are short, context-less, and very noisy
  May not carry desired signals for info extraction

- Slang and words not in dictionaries
  - Difference control in the second seco
- Tweets are short, context-less, and very noisy
  May not carry desired signals for info extraction
- Tweets are of streaming type
  - Incoming data may represent new information.

- Slang and words not in dictionaries
  - Difference control in the second seco
- Tweets are short, context-less, and very noisy
  May not carry desired signals for info extraction
- Tweets are of streaming type
  - Incoming data may represent new information.
- Very dynamic community structure
   Follower/Followee relations.

# Q1. Churn Prediction

- Churn happens when a customer leaves a brand or stop using its service.
- Churn rate indicates
  - Customer response
  - Average time an individual remains a customer.

<u>**Task</u>** Given a **tweet** about a **target brand**, determine if the user intends to leave the brand!</u>

# Q1. Churn Prediction

Cant wait to leave [Brand-1] for [Brand-2]! One more bill!! My days with [Brand-1] are numbered.

I will change carriers as soon as contract is up. This loyal customer will be gone #awfulcustomerservice.

# Isn't It Easy?

• Use list of churny keywords<sup>\*</sup> to classify tweets as churny or non-churny.

![](_page_17_Figure_2.jpeg)

\* {leave, leaving, switch, switching, numbered, cancel, canceling, discontinue, give up, call off, through with, get rid, end contract, change to, changing, . . .}

# Isn't it Sentiment Classification?

- Negative tweets  $\rightarrow$  churny
- Positive tweets  $\rightarrow$  non-churny!

![](_page_18_Figure_3.jpeg)

- Positive & Churny: hate that I might end up leaving [Brand] cuss they are the best company ever
- Negative & Non-churny: [Brand]'s cell coverage still sucks

1. Target-dependent task: tweets comparing several brands!

I am leaving [BRAND-1] for [BRAND-2]

2. Simple language constituents

switch to [Brand]

switch from [Brand]

3. Negation effect!

### [Brand] is awesome, I'll never leave them

4. Churny keywords may not convey churn!

I need a little [Brand]'s #help b4 leaving the states

5. Subtle ways in using language as in

### debating if I should stay with [Brand]

# Important Features

• Demographic

• Content

Context

#### Description

Activity ratio: average No. of posts about brand/competitors per day

ratio of active days about brand/competitor average time gap between posts about brand/competitor ratio of urls in posts about brand/competitor

average No. of words in post about brand/competitor

Average of friends activity ratios

# followers and friends

If user has bio information

If bio contains URL

#### Description

Unigrams / Bigrams

Neighboring words of brand/competitors names

Syntactic and Comparative marker features

Sentiment features

Tense of tweet

News indicator features

#### Description

Content features of user/friends/brand/competitors posts in thread (as defined in Table 4)

# posts from user/friends/brand/competitors in thread
# posts in thread

# posts in thread

Reciprocity between user and brand/competitors posts

# **Tackling Negation**

PRP MD aux VB dobj NNP I will leave Brand (a) syntactic features: {dobjleave-Brand, nsubj-leave-i, aux-leave-will}.

![](_page_25_Figure_2.jpeg)

# **Dependency Path**

- The sub-tree that covers the path from the root of the tree to the target brand node and all its children.
- Extracts key content for churn prediction

![](_page_26_Figure_3.jpeg)

I want to switch from crappy [Brand-1] to [Brand-2] or [Brand-3]

## **Tweet Representation**

 Content representation using Recurrent Neural Network

![](_page_27_Figure_2.jpeg)

Basic RNN for tweet Representation

# **Evaluation- Detection**

• Macro-Average Performance over Verizon, T-Mobile, AT&T datasets

|     | BOW                                    |       | RNN      |        |          |                            |
|-----|----------------------------------------|-------|----------|--------|----------|----------------------------|
|     | BOW Features                           | hinge | logistic | hinge  | logistic | RNN Features               |
|     |                                        |       |          | 62.97  | 63.73    | tRep                       |
| (1) | unigram                                | 65.30 | 64.30    | 59.97  | 61.37    | wRep                       |
|     |                                        |       |          | 66.13* | 66.20*   | twRep                      |
| (2) | unigram+Nb                             | 73.63 | 72.17    | 71.07  | 73.90*   | twRep+NbRep                |
| (3) | unigram+Dep                            | 72.40 | 71.80    | 75.66* | 75.43*   | twRep+DepRep               |
| (4) | unigram+Cntx                           | 74.27 | 73.20    | 75.47* | 75.03*   | twRep+CntxRep              |
| (5) | unigram+Nb+Dep+Cntx                    | 77.03 | 75.60    | 76.77  | 77.56*   | twRep+NbRep+DepRep+CntxRep |
| (6) | BOW+RNN: hinge: 78.30, logistic: 78.15 |       |          |        |          |                            |

# **Evaluation- Ranking**

• A good model should rank the most churny tweets higher in its ranking list of churny tweets.

![](_page_29_Figure_2.jpeg)

# Summary

- Effective techniques for churn prediction in social media.
- Demographic, content, and context features are important.
  - Dependency path & context features
- Churn prediction is not sentiment analysis.