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Lecture Topics	
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• Churn Prediction 
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Brandtology 
The science of studying brands and 

their customers in social media. 

Churn predictor 



 
 

Churn Prediction in Social Media: How can 
we identify churny content in social media? 
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[Brand-1] [Brand-2] 

[Brand-3] 
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33% asked friend’s opinion about a product  

26% bought a product or service  

29% complained about a brand or product 

27% recommended a brand or product 

33% followed a group created by a brand  

25% used an app created by a brand  

30% shared photos about a brand 

30% shared video created by a brand 

Twitter Active Users  

Important to 
extract insights 
form valuable 
user generated 
content about 
brands! 



Brands in SM 
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Brands in SM 
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Large-scale Data 
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779 K 

599 K 



Large-scale Data 
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@Verizon 
Verizon 

Number of daily tweets posted about Verizon 



Challenges 
•  Slang and words not in dictionaries 
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Challenges 
•  Slang and words not in dictionaries 
▫  Tomorrow: 2m, 2ma, 2mar, 2mara, 2maro, 

2marrow, 2mor, 2mora, 2moro, 2morow, 2morr, 
2morro, 2morrow, 2moz, 2mr, 2mro, 2mrrw, 2mrw, 
2mw, tmmrw, tmo, tmoro, tmorrow, tmoz, tmr, tmro, 
tmrow, tmrrow, tmrrw, tmrw, tmw, tomaro, tomarow, 
tomarro, tomarrow, tomm, tommarow, tommarrow, 
tommoro, tommorow, tommorrow, tommorw, 
tommrow, tomo, tomolo, tomoro, tomorow, tomorro! 

12 Credit: Alan Ritter, Ohio State University 



Challenges 
•  Slang and words not in dictionaries 
▫  Tomorrow: 2m, 2ma, 2mar, 2mara, 2maro, 2marrow, 2mor, 2mora, 2moro, 2morow, 2morr, etc. 

•  Tweets are short, context-less, and very noisy 
▫  May not carry desired signals for info extraction 
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Challenges 
•  Slang and words not in dictionaries 
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•  Tweets are short, context-less, and very noisy 
▫  May not carry desired signals for info extraction 

•  Tweets are of streaming type 
▫  Incoming data may represent new information. 
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Challenges 
•  Slang and words not in dictionaries 
▫  Tomorrow: 2m, 2ma, 2mar, 2mara, 2maro, 2marrow, 2mor, 2mora, 2moro, 2morow, 2morr, etc. 

•  Tweets are short, context-less, and very noisy 
▫  May not carry desired signals for info extraction 

•  Tweets are of streaming type 
▫  Incoming data may represent new information. 

• Very dynamic community structure 
▫  Follower/Followee relations. 
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Q1. Churn Prediction 
• Churn happens when a customer leaves a brand or 

stop using its service. 

• Churn rate indicates 
▫  Customer response 
▫  Average time an individual remains a customer. 
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Task 
Given a tweet about a target brand, determine if the user 
intends to leave the brand! 



Q1. Churn Prediction 

Cant wait to leave [Brand-1] for [Brand-2]! One more bill!! 
My days with [Brand-1] are numbered. 
 
 
I will change carriers as soon as contract is up. 
This loyal customer will be gone #awfulcustomerservice. 
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Isn’t It Easy? 
• Use list of churny keywords* to classify tweets as 

churny or non-churny.  
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* {leave, leaving, switch, switching, numbered, cancel, canceling, discontinue, give up, call off, through with, get rid, end 
contract, change to, changing, . . .} 
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F1+ 

Verizon AT&T T-Mobile 



Isn’t it Sentiment Classification? 
• Negative tweets à churny  
•  Positive tweets  à non-churny! 
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•  Positive & Churny: hate that I might end up leaving [Brand] cuss they are the best company ever 
•  Negative & Non-churny: [Brand]’s cell coverage still sucks 
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Challenges 
1.  Target-dependent task: tweets comparing several 

brands! 
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I am leaving [BRAND-1]  for [BRAND-2] 



Challenges 
2.  Simple language constituents  
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switch to [Brand] 

switch from [Brand] 



Challenges 
3.  Negation effect!  
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[Brand] is awesome, I’ll never leave them 



Challenges 
4.  Churny keywords may not convey churn!  
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I need a little [Brand]’s #help b4 leaving the states 



Challenges 
5.  Subtle ways in using language as in  
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debating if I should stay with [Brand] 



Important Features 
• Demographic  

• Content 

• Context 
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Tackling Negation 
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Dependency Path 
•  The sub-tree that covers the 

path from the root of the tree 
to the target brand node and 
all its children. 

• Extracts key content for  
churn prediction 
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[Brand-1] [Brand-2] 

[Brand-3] 

I want to switch from crappy [Brand-1] to [Brand-2] or [Brand-3] 



Tweet Representation 
• Content representation using Recurrent Neural 

Network  
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y(t)

context = s(t) 

w(t)

s(t-1)

Basic RNN for tweet Representation 



Evaluation- Detection 
• Macro-Average Performance over Verizon, T-

Mobile, AT&T datasets 
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Evaluation- Ranking  
• A good model should rank the most churny tweets 

higher in its ranking list of churny tweets. 
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Summary 
• Effective techniques for churn prediction in social 

media.  
 
• Demographic, content, and context features are 

important. 
▫  Dependency path & context features 

• Churn prediction is not sentiment analysis.  
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