Topic Detection & Tracking

Advanced Social Computing

Department of Computer Science University of Massachusetts, Lowell Spring 2020

Hadi Amiri <u>hadi@cs.uml.edu</u>

Announcement

- Project Presentations
 - □ Date: 3/29, 3:30 6:00 PM

Project Final Report

^{Due Date: 5/15, 11:59 PM}

Lecture Topics

- Topic Detection
- Topic Tracking
- Early Prediction

Matrix Factorization for Topic Detection

Tweets

Computer technology: 2-Tone L.E.D. to Simplify Screens

Stock Market: A Better Deal For Investors Isn't Simple. Large Sale 03/02

The Shape of Cinema, Transformed At the Click of a Mouse. Movie production.

The three big Internet portals begin to distinguish among themselves as shopping malls

Topics

Computer	0.02		
Technology	0.03		
System	0.04		
Internet	0.01		
•••			
Sale	0.02		
Product	0.03		
Market	0.02		
Consumer	0.04		
•••			
Film	0.05		
Movie	0.04		
Theater	0.02		
Production	0.04		
•••			

Tweets

Computer technology: 2-Tone L.E.D. to Simplify Screens

Stock Market: A Better Deal For Investors Isn't Simple. Large Sale 03/02

The Shape of Cinema, Transformed At the Click of a Mouse. Movie production.

The three big Internet portals begin to distinguish among themselves as shopping malls

A **topic** is a distribution over words

Topics

Computer Technology System Internet 	0.02 0.03 0.04 0.01		
Sale	0.02		
Product	0.03		
Market	0.02		
Consumer	0.04		
•••			
Film	0.05		
Movie	0.04		

0.02

Theater

...

Production 0.04

Tweets

Computer technology: 2-Tone L.E.D. to Simplify Screens

Stock Market: A Better Deal For Investors Isn't Simple. Large Sale 03/02

The Shape of Cinema, Transformed At the Click of a Mouse. Movie production.

The three big Internet portals begin to distinguish among themselves as shopping malls

A **topic** is a distribution over words A **tweet** is a mixture of topics / distribution over topics

Assignments

- Different learning techniques
- Matrix factorization methods
 - LU decomposition
 - Singular Value Decomposition(SVD)
 - Probabilistic Matrix Factorization(PMF)
 - Online) Non-negative Matrix Factorization(NMF)

• Etc.

m: # terms in the datasetn: # docs in the datasetk: # topics in the dataset

m: # terms in the dataset
n: # docs in the dataset
k: # topics in the dataset

m: # terms in the datasetn: # docs in the datasetk: # topics in the dataset

$$(\mathbf{D}, \mathbf{X}) = \arg \min_{\mathbf{D}, \mathbf{X}} \left\| \mathbf{S} - \mathbf{D} \mathbf{X} \right\|_{\mathrm{F}}^{2} + \lambda \left\| \mathbf{X} \right\|_{1}^{2}$$

s.t. $\mathbf{X} \ge \mathbf{0}, \mathbf{D} \ge \mathbf{0}, \|\mathbf{d}_{i}\| = 1$ for $i = \{1, \dots, k\}$

- Non-convex optimization problem.
 many local optimum.
- But, if one of the variables, either **D** or **X**, is known, optimization wrt the other will be convex.
 - Solution:
 - Iteratively optimize the objective function
 - Alternatively optimize wrt D and X while holding the other fixed!

Smooth evolution of topics through time

• Incremental Clustering

Evolving topic: a previously identified topic. Emerging topic: new topics

• Incremental Clustering

Emerging topic: new topics

• Incremental Clustering

• Incremental Clustering for Topic Discovery

- Compute similarity btw each incoming tweet and each cluster center.
- If the maximum similarity value is greater than *τ*, assign the tweet to the cluster and update cluster center.
- Otherwise, generate a new cluster and cluster center.

• *faster* approach: Minhash or LSH

- 1: Input: tweet sets D, topic cluster set C, cluster center set Center, and threshold τ .
- 2: Output: update topic clusters C, and update cluster centers Center.
- 3: Process:
- 4: if $C = \emptyset$ then
- 5: random select N tweets from D and add into C and Center.
- 6: end if
- 7: initialize max, tmp_C , tmp_{center} .
- 8: for $d_i \in D$ do
- 9: for $center_j \in Center$ do
- 10: compute Cosine Similarity sim between $center_j$ and d_i .
- 11: if sim > max then

$$max = sim, tmp_C = C_j, tmp_{center} = center_j.$$

- 13: end if
- 14: end for
- 15: if $max > \tau$ then
- 16: distribute d_i to cluster tmp_C , and update tmp_{center} .
- 17: else

12:

- 18: new cluster and centroid and add to C and Center.
- 19: **end if**
- 20: end for
- 1: return C and Center.

• Key Idea: Temporal Coherence, smooth evolution

D at *t* to be a smooth evolution of **D** at *t*-1

No dramatic change in distribution over words for the same **evolving** topic in consecutive time stamps. The nature of the topic remains the same.

• Key Idea: Temporal Coherence, smooth evolution

D at *t* to be a smooth evolution of **D** at *t*-1

No dramatic change in distribution over words for the same **evolving** topic in consecutive time stamps. The nature of the topic remains the same.

$$\mathcal{L}(\mathbf{D}) = \| \mathbf{S} - \mathbf{D}\mathbf{X} \|_{F}^{2} + \lambda \| \mathbf{X} \|_{1} + \mu \| \mathbf{D} - \mathbf{D}^{t-1} \|_{F}^{2}$$
$$\mathcal{H}[\mathcal{L}(\mathbf{D})] = \mathbf{X}\mathbf{X}^{T} + 2\mu\mathbf{I}_{k} \qquad \mathbf{D}_{i+1} = P\left[\mathbf{D}_{i} - \alpha_{i}\nabla_{\mathbf{D}}\mathcal{L}(\mathbf{D})_{[\mathbf{D}_{i},\mathbf{X}]}\right]$$

Algorithm 5.2. Computing \mathbf{D}^{t} and \mathbf{X}^{t} at time t, see TL in Figure 4 Input: \mathbf{S}^{t} , \mathbf{D}^{t-1} , itr: number of iterations Output: \mathbf{D}^{t} , \mathbf{X}^{t} 1. Compute \mathbf{X}^{t} using \mathbf{S}^{t} and \mathbf{D}^{t-1} 2. $\mathbf{D}_{0}^{t} = \mathbf{D}^{t-1}$ 3. for i=1 : itr do 4. compute $\nabla_{\mathbf{D}} \mathcal{L}(\mathbf{D}_{i-1}^{t})$ 5. $\mathbf{U} = \nabla_{\mathbf{D}} \mathcal{L}(\mathbf{D}_{i-1}^{t}) diag^{-1} (\mathcal{H}[\mathcal{L}(\mathbf{D})]_{[\mathbf{X}^{t}]}) + \mathbf{D}_{i-1}^{t}$ 6. $\mathbf{D}_{i}^{t} = max(\mathbf{0}, \mathbf{U})$ 7. end for

[1] Julien Mairal, Francis Bach, Jean Ponce, Guillermo Sapiro: *Online Learning for Matrix Factorization and Sparse Coding*. Journal of Machine Learning Research 11: 19-60 (2010)

Topic Tracking- Cnt.

Temporal Coherence constraint for topic learning:
D^{ev} to be a smooth evolution of D^{t-1}

$$(\mathbf{D}, \mathbf{X}) = \arg \min_{\mathbf{D}, \mathbf{X}} \left\| \mathbf{S} - \mathbf{D} \mathbf{X} \right\|_{F}^{2} + \lambda \left\| \mathbf{D} - \mathbf{D}^{\mathsf{t}-1} \right\|_{F}^{2} + \lambda \left\| \mathbf{X} \right\|_{1}^{2}$$

s.t. $\mathbf{X} \ge \mathbf{0}, \mathbf{D} \ge \mathbf{0}, \|\mathbf{d}_{i}\| = 1$ for $i = \{1, ..., k\}$

- Can be solved efficiently
 - Space: $O(n^*m)$, given that m >> k
 - Running time: O(n)

Early Detection of Emerging Topics

Early Detection of Topics

- Evolution of a hot topic
 - t_s topic detection time
 - t_{hot} the time by which topic becomes major.
 - tweets number exceeds a threshold.
- We aim to predict if an already-detected topic will be major in the near future!

Early Detection

View 1: rate indicators

- Rate of increase in #users
- Rate of increase in #tweets
- Rate of increase in *#re-tweets*

View 2: overlap indicators

- Overlap btw users posted about topic and influential users
- Overlap btw topic keywords and top influential keywords

Co-training (Co): Two SVM classifiers trained on the above two orthogonal views of features

Ensemble Learner (En): Ensemble of three classifiers (Decision Tree, SVM, and Naive Bayesian) vote for each unlabeled topic.

Source: Yan, C., et al. Emerging Topic Detection for Organizations from Social Media. SIGIR 2013.

Early Detection

- User authority / user influence against the topic
- Tweet authority / derived from topical user auth.

(6)

(7)

• f_1 is the rate of increase of user number,

$$f_1 = \frac{|U^t|}{\sum_{x=0}^t \frac{1}{t-x+1}|U^x|}.$$

• f_2 is the rate of increase of tweets number,

$$f_2 = \frac{|Tw^t|}{\sum_{x=0}^t \frac{1}{t-x+1}|Tw^x|}.$$

• f_3 is the rate of increase of re-tweets number,

$$f_3 = \frac{|Rtw^t|}{\sum_{x=0}^t \frac{1}{t-x+1} |Rtw^x|}.$$
 (8)

• f_4 is the overlap between org keyusers and top N influential topic users,

$$f_4 = \frac{\#(ku_{tp} \cap ku)}{\#ku_{tp}}.$$
(9)

• f_5 is the overlap between org keywords and top N influential topic keywords, and

$$f_5 = \frac{\#(kw_{tp} \cap kw)}{\#kw_{tp}}.$$
(10)

• f_6 represents the rate of increase of influence of the accumulated weight of tweets,

$$f_6 = \frac{|A^t|}{\sum_{x=0}^t \frac{1}{t-x+1} |A^x|},\tag{11}$$

where
$$A = \frac{\sum_{tw \in Tw_{tp}} auth_{tp}(tw)}{|Tw_{tp}|}$$

Figure 5: Performance of emerging topic Detection when $T_L = t_{hot}$

CL: Incremental clustering Co: Co-training En: Ensemble Learner

Organization	recall	precision	F_1					
StarHub	0.93	0.87	0.90					
	0.86	0.75	0.80					
	0.86	0.71	0.77					
DBS	0.89	0.80	0.84					
	0.89	0.73	0.80					
	0.89	0.67	0.70					
NUS	1.00	0.60	0.75					
	1.00	0.50	0.67					
	1.00	0.42	0.73					
	Organization StarHub DBS NUS	Organization recall StarHub 0.93 0.86 0.86 0.86 0.89 0.89 0.89 0.89 0.89 1.00 1.00 1.00 1.00	Organization recall precision StarHub 0.93 0.87 0.86 0.75 0.86 0.71 DBS 0.89 0.80 0.89 0.73 0.89 0.67 NUS 1.00 0.50 1.00 0.42					

Table 2: Performance of emerging topic detection when $T_L = t_{hot}$

CL: Incremental clustering Co: Co-training En: Ensemble Learner

۰.	$L = v_{mid}$							
	Methods	Organization	recall	precision	F_1			
	CL+En	StarHub	0.71	0.83	0.77			
	CL+TSVM		0.71	0.71	0.71			
	CL+Semi-NB		0.71	0.67	0.69			
	CL+En	DBS	0.78	0.78	0.78			
	CL+TSVM		0.78	0.70	0.74			
	CL+Semi-NB		0.78	0.64	0.70			
	CL+En	NUS	0.67	0.50	0.57			
	CL+TSVM		0.67	0.40	0.50			
	CL+Semi-NB		0.67	0.40	0.50			

Table 3: Performance of emerging topic detection when $T_L = t_{mid}$

CL: Incremental clustering Co: Co-training En: Ensemble Learner

Summary

- Effective NMF model with temporal coherence constraint
 - Improves topic tracking in streaming data.
- Effective framework for early prediction of emerging topics.
 - Rate and overlap features

Reading

- Emerging topic detection for organizations from microblogs. Chen, Y., et al. SIGIR'13.
- Learning evolving and emerging topics in social media. Saha, A. et al. WSDM'12
- Community detection in social networks considering topic correlations. Wang, Y., et al. AAAI'19.