
Centrality & Clustering

Advanced Social Computing

Department of Computer Science University of Massachusetts, Lowell Spring 2020

Hadi Amiri hadi@cs.uml.edu

Lecture Topics

- Centrality
 - Degree Centrality
 - Closeness Centrality
 - Betweenness Centrality
- Clustering
 - Edge Betweenness
 - Computing Edge Betweenness

Centrality

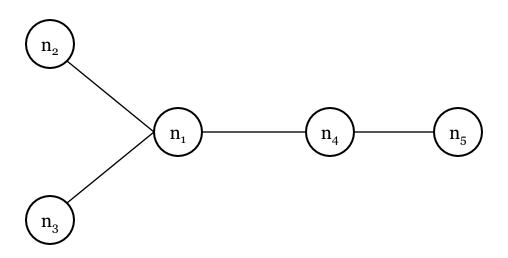
- What characterizes an important node in a network?
 - Most influential people in social nets,
 - Key infrastructure nodes in the Internet
 - Main spreaders of disease
 - Etc.
- Structural view:
 - Importance of a node is related to its position in the network.

Centrality Measures

- Different centrality measures capture different structural characteristics of nodes!
- There is often a high correlation between these measures!
- Sometimes the most important node might depend on which measure is used!

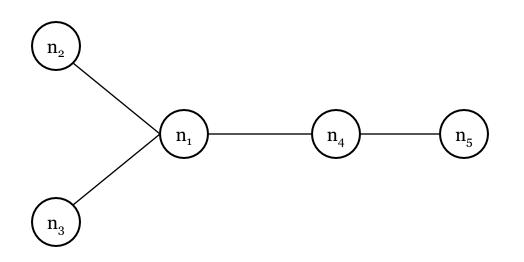
- C : Centrality
 - □ C (i): Centrality for node i
 - C(A): Centrality for a group of nodes $A \in N$

Centrality Measures- Cnt.



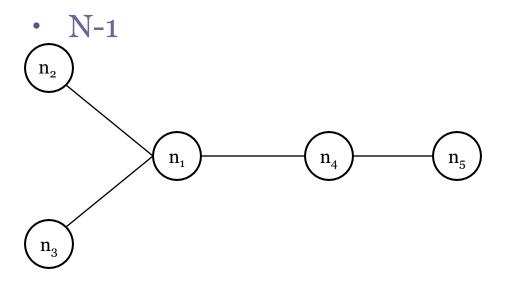
- Centrality
 - Degree Centrality
 - Closeness Centrality
 - Betweenness Centrality

Degree Centrality


- A node is central if it has links to many nodes.
 - Look at the node degree

Degree Centrality- Cnt.

- A node is central if it has links to many nodes.
 - Look at the node degree


	n1	n_2	n_3	n_4	n_5	
n_1	0	1	1	1	0	3
n_2	1	0	0	0	0	1
n_3	1	0	0	0	0	1
n ₄	1	0	0	0	1	2
n_5	0	0	0	1	0	1
	3	1	1	2	1	

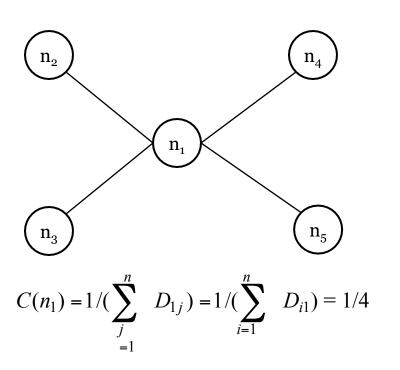
Adjacency Matrix (A)

Degree Centrality- Cnt.

- Standardized Degree Centrality
 - Divide by the maximum possible degree centrality value!

	n1	n_2	n_3	n ₄	n_5	
n_1	0	1	1	1	0	3/4
n_2	1	0	0	0	0	1/4
n_3	1	0	0	0	0	1/4
n_4	1	0	0	0	1	1/2
n_5	0	0	0	1	0	1/4

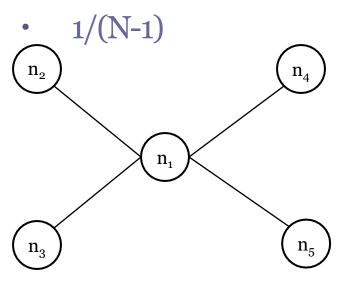
Centrality Measures- Cnt.



- Centrality
 - Degree Centrality
 - Closeness Centrality
 - Betweenness Centrality

Closeness Centrality

- A node is central if it is close to other nodes.
 - Look at distance btw nodes
 - Closeness: 1 / Sum of distance to other nodes

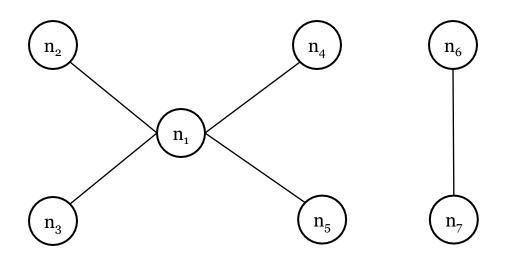

	n1	n_2	n_3	n_4	n_5	
n ₁	0	1	1	1	1	1/4
n_2	1	0	2	2	2	1/7
n_3	1	2	0	2	2	1/7
n_4	1	2	2	0	2	1/7
n_5	1	2	2	2	0	1/7

Distance Matrix (D)

Closeness Centrality- Cnt.

- Standardized Closeness Centrality
 - Divide by the maximum possible closeness centrality value!

$$C(n_1) = (N-1)/(\sum_{j=1}^{n} D_{1j}) = (N-1)/(\sum_{i=1}^{n} D_{i1}) = 4/4$$

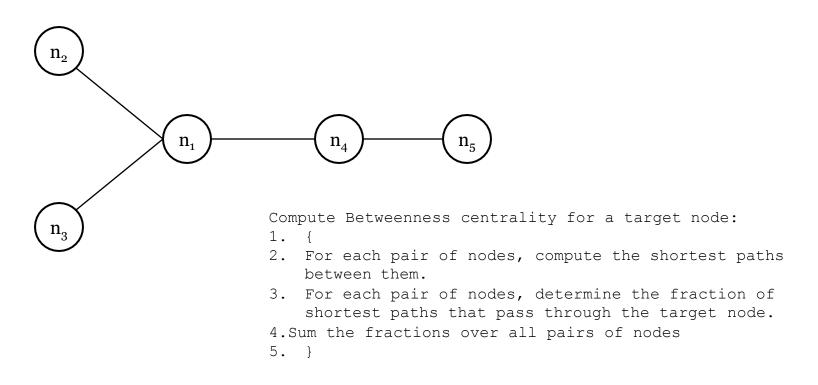

	n1	n_2	n_3	n_4	n_5	
n_1	0	1	1	1	1	4/4
n_2	1	0	2	2	2	4/7
n_3	1	2	0	2	2	4/7
n_4	1	2	2	0	2	4/7
n_5	1	2	2	2	0	4/7

Distance Matrix (D)

 How to compute Closeness Centrality in networks with disconnected components?

- Only consider the giant component or do graph sampling?
- Only consider nodes that are reachable in paths of length 1, 2, ... This is called k-Step Reach!

Centrality Measures- Cnt.

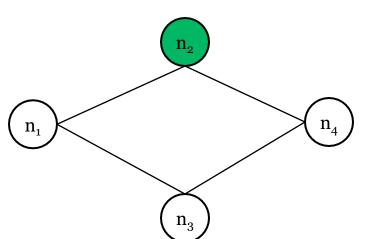

- Centrality
 - Degree Centrality
 - Closeness Centrality
 - Betweenness Centrality

Betweenness Centrality

UMASS

- A node is central if other nodes have to go through it to reach each other.
 - Look at shortest paths between nodes

Betweenness Centrality- Cnt.

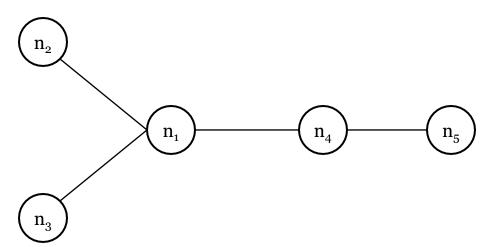


 s_{ik} Number of shortest paths btw nodes n_j and n_k

 $s_{jk}(n_i)$ Number of shortest paths btw nodes n_j and n_k that include node n_i

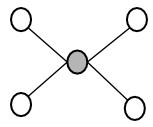
 $\frac{\mathbf{s}_{jk}(n_i)}{\mathbf{s}_{jk}}$ Proportion of shortest paths btw nodes n_j and n_k that include node n_i

 $Sum(_{j,k!=i} \frac{s_{jk}(n_i)}{s_{jk}})$ Proportion of shortest paths btw all nodes that include node n_i

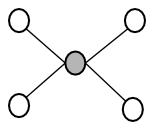


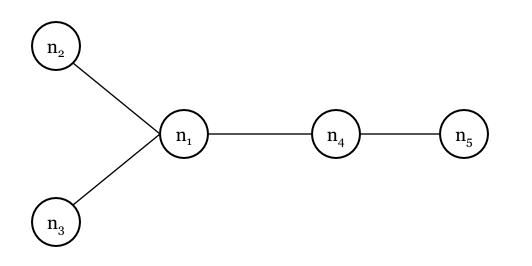
Shortest paths n ₁ -n ₄	n ₁ -n ₂ -n ₄ , n ₁ -n ₃ -n ₄
S ₁₄	2
$s_{14}(n_2)$	1
$s_{14}(n_2)/s_{14}$	1/2
$C(n_2)$	1/2

Shortest paths btw n_1 - n_3 and n_3 - n_4 don't include n_2 ! Their corresponding proportions are o.

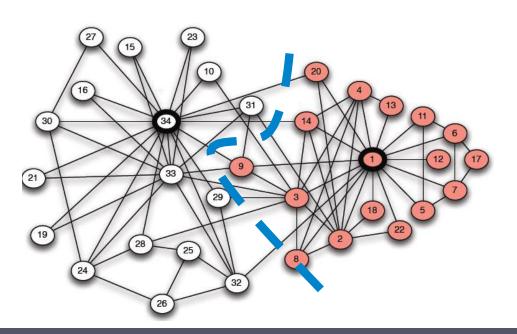


Pair	Shortest path	Betweenness	
n1 n2 n1 n3 n1 n4 n1 n5 n2 n3 n2 n4 n2 n5	n1-n2 n1-n3 n1-n4 n1-n4-n5 n2-n1-n3 n2-n1-n4 n2-n1-n4-n5	n1 n2 n3 n4 n5	5 0 0 3 0
n3 n4 n3 n5	n3-n1-n4 n3-n1-n4-n5		


- Standardized Betweenness Centrality
 - Divide by the maximum possible betweenness centrality value!
 - ?

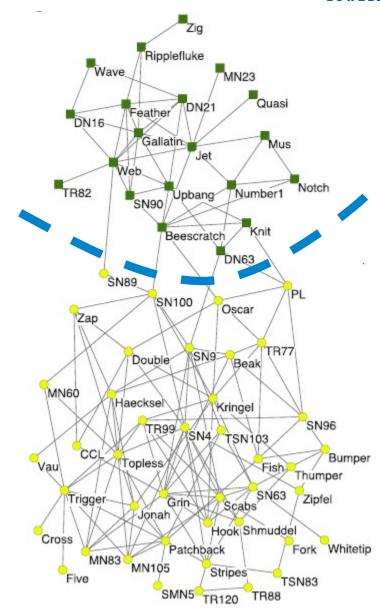

- Standardized Betweenness Centrality
 - Divide by the maximum possible betweenness centrality value!
 - (N-1)(N-2)/2 : the number of other pairs of nodes (exclude the node itself)

- Standardized Betweenness Centrality
 - Divide by the maximum possible betweenness centrality value!
 - (N-1)(N-2)/2 : the number of other pairs of nodes (exclude the node itself)

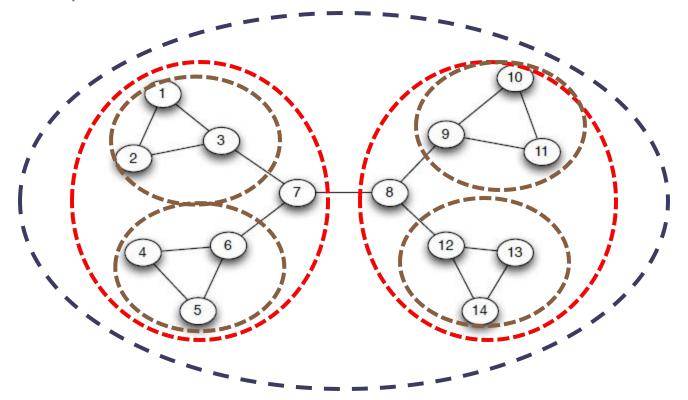

Betweenness Stnd. Betwe	enness
n1 5 5/6 = 0.83 n2 0 0/6 = 0.00 n3 0 0/6 = 0.00 n4 3 3/6 = 0.50 n5 0 0/6 = 0.00	

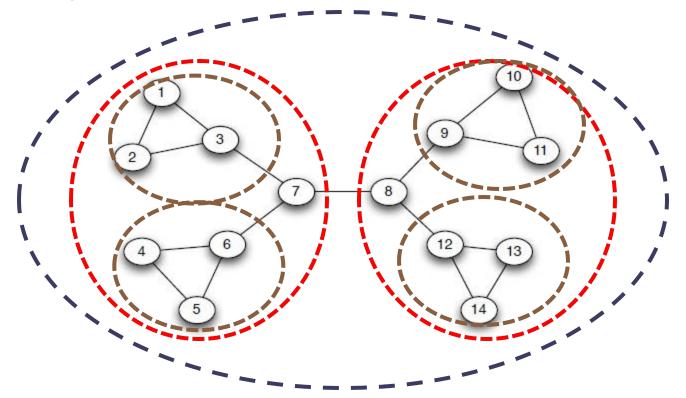
Clustering

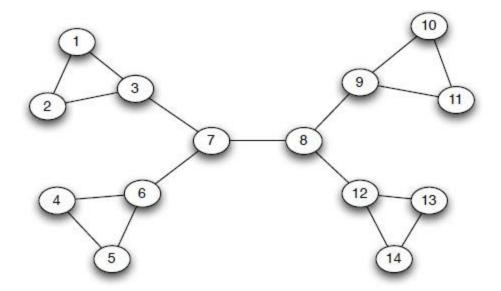
- We aim to develop techniques to identify densely connected regions
 - breaking a network into a set of densely connected nodes
 - with sparse connections between groups


Graph Partitioning

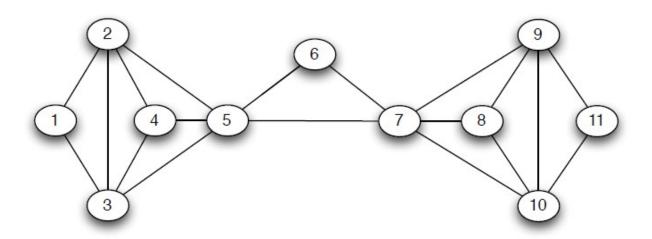
UMASS


- Members of the same group are heavily connected, while
- Members of different groups are less connected!


- Divisive methods
 - breaking first at the 7-8 edge, and then the nodes into nodes 7 and 8

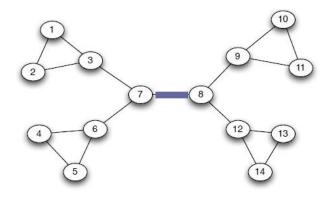

- Agglomerative methods
 - merge the 4 triangles and then pairs of triangles (via nodes 7 and 8)

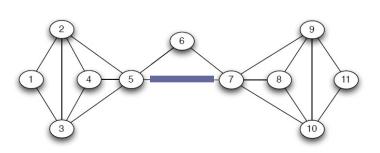
Divisive Approach


- Bridges connect tightly-knit groups in networks!
 - To find clusters, remove bridges and local bridges!
 - Issue 1: when there are several bridges, which one to remove?

Divisive Approach- Cnt.

- Bridges connect tightly-knit groups in networks!
 - To find cluster, remove bridges and local bridges!
 - Issue 2: What if there is no bridge?




A network can display tightly-knit regions even when there are no bridges or local bridges along which to separate it.

Divisive Approach- Cnt.

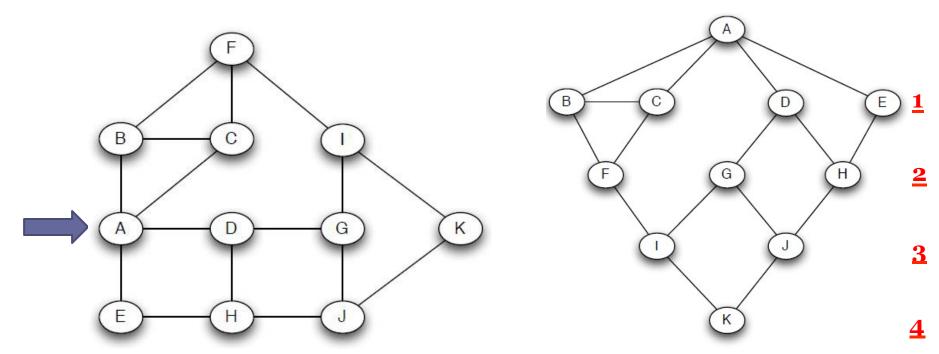
- Bridges form part of the shortest path between pairs of nodes in different parts of the network!
 - Find edges that carry most of "traffic" in the network and successively remove edges of high traffic!

Edge Betweenness

- Edge Betweenness:
 - Let's assume 1 unit of "flow" will pass over all shortest paths btw any pair of nodes A and B.
 - If there are *k* shortest path btw A and B, then 1/k units of flow will go along each shortest path!
 - Betweenness of an edge is the total amount of flow it carries!
- Girvan-Newman Algorithm:
 - Repeat until no edges are left:
 - Calculate betweenness of edges
 - Remove edges with highest betweenness

Communities are the resulting connected components!

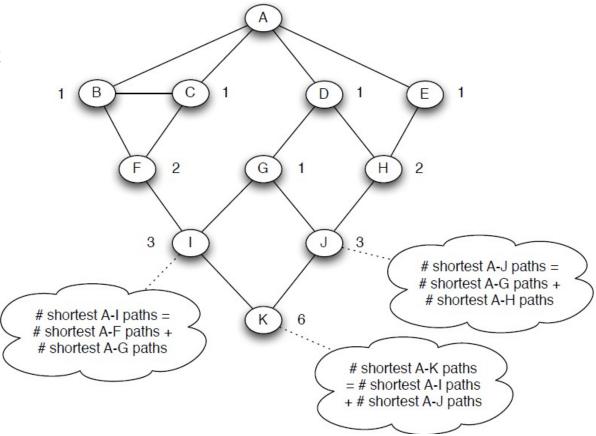
Computing Edge Betweenness


- A clever way to compute betweennesses efficiently
 - Use breadth-first Search

```
For each node A{
Run BFS on A
Count the number of shortest paths from A to any other node
Determine the amount of traffic from A to other nodes
}
Compute betweenness for each edge by summing all the traffic passing over the edge
```

Computing Edge Betweenness

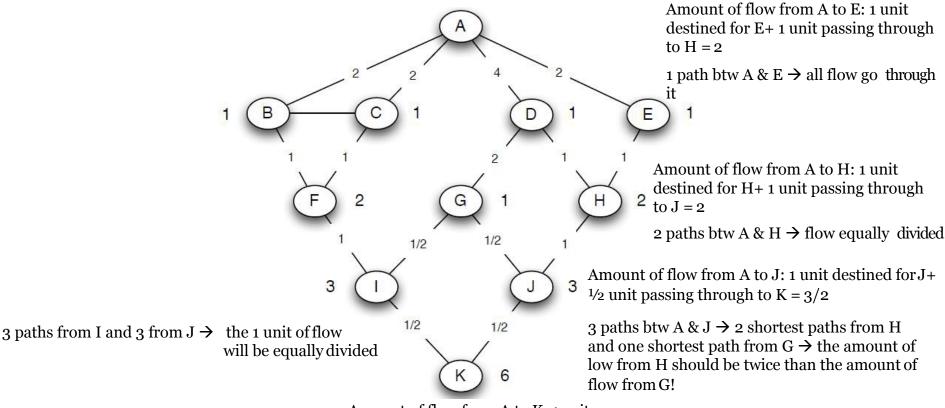
- A clever way to compute betweennesses efficiently
 - Use breadth-first Search
 - Consider the graph from the perspective of one node at a time!



(b) Breadth-first search starting at node A

- A clever way to compute betweennesses efficiently
 - Count the number of shortest paths from A to all other nodes of the network

Number of shortest paths to each node is the sum of the number of shortest paths to all nodes directly above it!



- A clever way to compute betweennesses efficiently
 - Determine the amount of traffic from A to others
 - If there are *k* shortest path btw A and B, then 1/k units of flow will go through each shortest path.
 - Working up from the lowest layers and computing the amount of flow that pass through each edge!

- A clever way to compute betweennesses efficiently
 - Determine the amount of traffic from A to others

Amount of flow from A to K: 1 unit

- A clever way to compute betweennesses efficiently
 - Use breadth-first Search

```
For each node A{
Run BFS on A
Count the number of shortest paths from A to any other node
Determine the amount of traffic from A to other nodes
}
Compute betweenness for each edge by summing all the traffic passing over the edge and divide by 2
```

Note that we count the flow between each pair of nodes A and B twice (once when running BFS from A and once when running BFS from B)! So, we need to divide resulting values by 2!

Reading

- Ch.o3 Strong and Weak Ties [NCM]
- Why we twitter: understanding microblogging usage and communities. WebKDD'07.
- Community detection in graphs. Fortunato, S. Physics reports 2010
- Searching for superspreaders of information in real-world social media. Pei, S., et al. Scientific reports 2014.