
The Structure of the Web 

Advanced Social Computing 
 
Department of Computer Science  
University of Massachusetts, Lowell 
Spring 2020 
 
Hadi Amiri  
hadi@cs.uml.edu 



Announcement 

2 

• HW3 out 
▫  Due Date: 2/19, 3:30 PM 



Lecture Topics 

3 

•  The Web 
•  Strongly Connected Components  



Information Networks 

4 

•  Information Network 
▫  Nodes are pieces of information and Edges join the  

related ones! 
• Examples of information networks: 
▫  The Web 
▫  Citation networks 
▫  Encyclopedia References 
▫  Wireless communication 
▫  Etc. 



•  Sample Citation Net 

Information Networks- Cnt. 

Strength of week ties 
 
Triadic closure 
 
Small-world phenomenon 

Structural balance  

Homophily 

5 



The World Wide Web 
• Created by Tim Barners‐Lee & his colleagues 

during 1989-1991 in CERN: 
▫  CERN is in Geneva, Switzerland 

Q: Did you invent the internet? 

A: 

6 Answers for Young People:  http://www.w3.org/People/Berners-Lee/Kids.html 



The World Wide Web- Cnt. 
• Read some history at 
▫  40 maps: http://www.vox.com/a/internet-maps 
 

7 Source: http://www.vox.com/a/internet-maps 

Who controls IP addresses, Domain names around the world, Some small island nations lend their domains to internet startups, 
Fiber optic cables around the world & their disruption, Zmap, etc.  

1993: The internet becomes a global network
2000: The internet conquers the world



The Web as a Graph 

8 

•  Let’s say we have a set of Web pages 

• How can we organize this information? 



The Web as a Graph- Cnt. 

node 

Hyperlink 

9 



The Web as a Graph- SCC 

10 



Web Structure 

11 Graph structure in the Web. Broder et. al., 2000. WWW 2000. 

• How does the Web look like? 
▫  Broder et al., Graph structure in the Web. WWW  

2000: 
�  Altavista data 
�  Crawl from October, 1999 containing 

�  203 million URLs 
�  1,466 million links. 



Web Structure- Cnt. 
• Running BFS starting from random nodes 
▫  undirected. 

12 Graph structure in the Web. Broder et. al., 2000. WWW 2000. 



Web Structure- Cnt. 
• Running BFS starting from random nodes 
▫  in-links & out-links. 

13 Graph structure in the Web. Broder et. al., 2000. WWW 2000. 



Web Structure- Cnt. 
• Distribution of SCCs and WCCs on the web. 

•  SCC of G is a maximal set of nodes C 
such that for all u, v in C, both u and v 
are reachable from each other. 

14 Graph structure in the Web. Broder et. al., 2000. WWW 2000. 



Web Structure- Cnt. 
• Distribution of SCCs and WCCs on the web. 

•  SCC of G is a maximal set of nodes C 
such that for all u, v in C, both u and v 
are reachable from each other. 

• WCC of G is a maximal set of nodes C 
such that for all u, v in C, there is an 
undirected path between them.  

15 Graph structure in the Web. Broder et. al., 2000. WWW 2000. 



Web Structure- Cnt. 
• Distribution of SCCs and WCCs on the web. 

16 Graph structure in the Web. Broder et. al., 2000. WWW 2000. 

WCC: We find a giant component of 186 million nodes in which fully 91% of the nodes in our crawl 
are reachable from one another by following either forward or backward links. 

189M 56M



Web Structure- Cnt. 

17 Graph structure in the Web. Broder et. al., 2000. WWW 2000. 

•  The Web contains a giant SCC. 
�  If there were 2 giant SCCs, X and Y 
� a single link from any node in X to any node Y, and 

another  link from any node in Y to any node in X is 
enough to merge X and Y to become part of a single 
SCC. 



Web Structure- Cnt. 

IN nodes: can reach SCC but cannot be reached from it. 
OUT nodes: can be reached from SCC but cannot reach it. 
Tendrils nodes: (a) reachable from IN but cannot reach SCC, (b) can reach OUT but cannot be  
reached from SCC. 
Tendrils nodes satisfying both a & b, travel in tube from IN to OUT without touching SCC. 
Disconnected nodes: have no path to SCC ignoring directions 

18 Graph structure in the Web. Broder et. al., 2000. WWW 2000. 

Bow-Tie Structure of the Web. 



Web Structure- Cnt. 

19 Graph structure in the Web. Broder et. al., 2000. WWW 2000. 

Bow-Tie Structure of the Web. 



Web Structure- Cnt. 

A forward BFS from any node in either the SCC or IN will explode (lead to reaching 
many other nodes), as will a backward BFS from any node in either the SCC or 
OUT. 

20 Graph structure in the Web. Broder et. al., 2000. WWW 2000. 

Bow-Tie Structure of the Web. 



Web Structure- Cnt. 

The Web structure is relatively stable despite the fact that the constituent pieces of the  
bow-tie are constantly shifting their boundaries, with nodes entering (and also leaving)  
the giant SCC over time. 

21 Graph structure in the Web. Broder et. al., 2000. WWW 2000. 

Bow-Tie Structure of the Web. 



Web Structure- Cnt. 

Bow-tie structure provides a global view of the Web, but it doesn’t provide insight 
into patterns of connections within the parts. 

22 Graph structure in the Web. Broder et. al., 2000. WWW 2000. 

Bow-Tie Structure of the Web. 



Web Structure- Cnt. 
• Distribution of SCCs and WCCs on the web. 

23 Graph structure in the Web. Broder et. al., 2000. WWW 2000. 

WCC: The graph is still connected: 
1.  The connectivity is extremely resilient and doesn’t depend on the nodes with high in-degree.  
2.  High in-degree nodes are embedded in a graph that is well connected without them. 



Web Structure- Cnt. 
•  Further work can be divided into three directions: 

1.  Would this basic structure, and the relative 
fractions of the components, remain stable 
over time? 

2.  Mathematical models for evolving graphs, 
motivated in part by the structure of the web. 

3.  What notions of connectivity might be 
appropriate for the web graph? 
•  weak and strong, co-citation relation, 

bibliographic coupling, etc. 

24 Graph structure in the Web. Broder et. al., 2000. WWW 2000. 

Bow-Tie Structure of the Web. 



Strongly Connected Components 
• Given digraph G = (V, E), a SCC of G is a maximal  

set of nodes C subset of V, such that for all u, v in  
C, both u and v are reachable from each other. 

• How can we find them in 
•  undirected graphs? 
•  directed graphs? 

25 



Finding SCCs 
• Given digraph G = (V, E), a SCC of G is a maximal  

set of nodes C subset of V, such that for all u, v in  
C, both u and v are reachable from each other. 

If G has an edge from some node in Ci to some node in Cj where i ≠ j, then  
one can reach any node in Cj from any node in Ci! For  example, one can 
reach any node in C2 from any node in C1 but cannot  return to C1 from C2. 

26 Source: http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/GraphAlgor/strongComponent.htm 



Finding SCCs- Cnt. 

27 Source: http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/GraphAlgor/strongComponent.htm 

• Need to know the following concept to find 
SCCs: 
1.  Transpose Graph 



Finding SCCs- Cnt. 
Transpose Graph (GT) 
•  The transpose of a given graph G is defined as: 
▫  GT = (V, ET), where ET = {(u, v): (v, u) in E}. 
�  GT is G with all edges reversed. 
�  Given G, one can create GT in linear time, i.e., Θ(|V|+ 

|E|), using adjacency lists. 

28 Source: http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/GraphAlgor/strongComponent.htm 



Finding SCCs- Cnt. 
Transpose Graph (GT) 
• Claim: G and GT have the same SCCs. 
▫ Meaning that nodes u and v are reachable from each  

other in G if and only if they are reachable from each 
other in  GT. 

• How to prove it? 

29 Source: http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/GraphAlgor/strongComponent.htm 



Finding SCCs- Cnt. 

30 Source: http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/GraphAlgor/strongComponent.htm 

Algorithm 
1.  Call DFS(G) to compute finishing times f[u] for  

all u 
2.  Compute GT 

3.  Call DFS(GT) while considering nodes in order of  
decreasing f[.] (as computed in DFS(G)) 

4.  Output nodes in each tree of the depth-first forest 
formed in DFS(GT) as a separate SCC. 



Finding SCCs- Cnt. 
1.  Call DFS(G) 

31 Source: http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/GraphAlgor/strongComponent.htm 



Finding SCCs- Cnt. 
2.  Compute GT 

G 

32 Source: http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/GraphAlgor/strongComponent.htm 

GT 



Finding SCCs- Cnt. 
3.  Call DFS(GT) considering nodes in order to  

decreasing f[.] 

4.  Output nodes in each tree formed in 
DFS(GT) as a separate SCC. 
{a, b, e}, {c, d}, {f, g}, and {h} 

33 Source: http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/GraphAlgor/strongComponent.htm 



Finding SCCs- Cnt. 
• Why does this algorithm work? 

• Need to know the following concept: 
1.  Component Graph 

34 Source: http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/GraphAlgor/strongComponent.htm 



Finding SCCs- Cnt. 
Component Graph (GSCC) 
• Graph with SCCs as nodes 
• GSCC = (VSCC, ESCC), where VSCC has one node for  

each SCC in G and ESCC has an edge if there's an  
edge between the corresponding SCC's in G. 

C1 

35 Source: http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/GraphAlgor/strongComponent.htm 

C2 C4 

C3 

G GSCC 



Finding SCCs- Cnt. 
Component Graph (GSCC) 
• Claim: GSCC is a DAG! 
▫  Let C and C' be distinct SCC's in G, 
▫  Let u, v ϵ C, 
▫  Let u', v' ϵ C', 
▫  Suppose there is a path u àu' in G. Then there cannot 

also be a path v' à   v in G. 
•  Proof: 
▫  Suppose there is a path v' à   v in G. Then 
�  both u à   u' à   v' and v' à   v à   u are in G. 
�  Therefore, u and v' are reachable from each other, so 

they cannot be in separate SCC's. # 

36 Source: http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/GraphAlgor/strongComponent.htm 



Finding SCCs- Cnt. 
• Why does this algorithm work? 

•  Let C and C' be distinct SCCs in G = (V, E). 
Suppose there is an edge (u, v) in E such that u 
in C and v in C'. Then f(C) > f(C'). 

•  f(C): latest finishing time of any vertex in C.  
 
 
 
• When we do the 2nd DFS, on GT, start with C with 

max f(C). Since f(C) > f(C') for all C' ≠ C, there are 
no edges from C to C' in GT. Therefore, DFS will 
visit only vertices in C. 

37 Source: http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/GraphAlgor/strongComponent.htm 



Reading 

38 

• Ch.13 The Structure of the Web [NCM] 
•  Strongly Connected Components 
▫  http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/GraphAlgor/

strongComponent.htm 

 


