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Lecture Topics 
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•  Popularity 
•  Power Laws 
• Rich Get Richer model 



Popularity 
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•  Popularity can be characterized by extreme  
imbalances! 
▫  People are known to their immediate social circle! 
▫  Few people achieve wider visibility! 
▫  Very few achieve global name recognition. 

•  Learning objectives: 
▫  How can we quantify these imbalances? 
▫  Why do they arise? 



Power Law 
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• A function that decreases as k to some fixed power, 
e.g. 1/k2, is called a power law! 
▫  It allows to see very large values of k in data! 

• Extreme imbalances are likely to arise! 
 



Power Law- Cnt. 
• Histogram of the populations of all US cities with  

population of 10,000 or more. 

5 Source: Power laws, Pareto distributions and Zipf's law. Newman. Contemporary physics 46.5. 2005. 



Power Law- Cnt. 

6 

• Power law Test: Given a dataset, test if it exhibits  
a power law distribution? 
1.  Compute histogram of values wrt a popularity 

measure (e.g. #in-links, #downloads, population 
of cities, etc.) 

2.  Test if the result approximately estimates a power 
law 1/kc  for some c, and if so, estimate the exponent 
c. 



Power Law- Cnt. 
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• What should  a power law plot look like? 
▫  f(k): the fraction of items that have value k 
▫  If power law holds, f(k) = a/kc ? 
�  for some constant c and a. 
▫  f(k) = a/kc =ak-c 

▫  log f(k) = log a - c log k 
�  straight line! “log f(k)” as a function of “log k” 

�  “c”: slope, and 
�  “log a”: y-intercept. 

�  log-log plot! 



Power Law- Cnt. 
•  If power-law holds, the “log -log” plot should be a 

straight line. 

8 Source: Power laws, Pareto distributions and Zipf's law. Newman. Contemporary physics 46.5. 2005. 



Power Law- Cnt. 
• Power Laws are every where 

9 Source: Power laws, Pareto distributions and Zipf's law. Newman. Contemporary physics 46.5. 2005. 



10 Source: Power laws, Pareto distributions and Zipf's law. Newman. Contemporary physics 46.5. 2005. 



Popularity 
•  Let’s focus on the Web in which we can measure  

popularity accurately! 
▫  Popularity of a page 

11 



Popularity- Cnt. 
•  Let’s focus on the Web in which we can measure  

popularity accurately! 
▫  Popularity of a page ~ number of its in-links 
�  Easy to count! 

12 



Popularity- Cnt. 
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• Question: 
▫  As a function of k, what fraction of pages on the Web 

have k in-links? 



Popularity- Cnt. 

14 Graph structure in the Web. Broder et. al., 2000. WWW 2000. 

• Question: 
▫  As a function of k, what fraction of pages on the Web 

have k in-links? 

Remote-only: older crawl 

•   c ~= 2.1 
•  Straight lines are linear 

regressions for the best power 
law fit. 

•  The anomalous bump at 120 on 
the x-axis is due to a large 
clique* formed by a single 
spammer. 

 
* Subset of nodes such that every two distinct 
nodes are adjacent. 



Popularity- Cnt. 

15 Graph structure in the Web. Broder et. al., 2000. WWW 2000. 

• Question: 
▫  As a function of k, what fraction of pages on the Web 

have k out-links? 

Remote-only: older crawl 

•   c ~= 2.7 
•  Initial segment of the out-

degree distribution deviates 
significantly from the power 
law: 
•  pages with low out-degree 

follow a different  
distribution. 



Popularity- The Long Tail 
• Question: Are most sales generated by a 

�  small set of popular items (hits), or 
�  large set of less popular items (niches)? 

hits  niches 
 

Check if this curve is changing shape over time, adding more area under the right at the expense of the left! 
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Popularity- The Long Tail 
• Question: Would personalization be useful? 

�  E.g. through exposing people to items that (may 
not be popular but) match with their interests! 

hits  niches 
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Popularity- Cause 
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• What is causing Power laws / Popularity? 



Rich Get Richer (RGR) 
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Rich-Get-Richer: A simple model for the creation  
of links as a basis for power laws! 
1.  Pages are created in order and named 1, 2, …, N. 
2.  When page j is created, it produces a link to an  

earlier page i < j according to the following  
rules: 

a)  With probability p, page j chooses page i uniformly  at 
random, and creates a link to i. 

b)  With probability (1- p), page j chooses page i  uniformly 
at random and creates a link to the page that i 
points to (copies decision made by i). 

•  Let’s assume that each page creates just 1 link 
▫  We can extend this model to multiple links as well. 



RGR – Power Law 
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• We observe power law, if we run this model for  
many pages 
▫  the fraction of pages with k in-links will be distributed 

according to a power law 1/kc! 
▫  Value of the exponent c depends on the choice of p. 

• Correlation between c and p? 



RGR - Power Law 
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• We observe power law, if we run this model for  
many pages 
▫  the fraction of pages with k in-links will be distributed 

according to a power law 1/kc! 
▫  Value of the exponent c depends on the choice of p. 

• Correlation between c and p? 
▫  Smaller p 
�  Copying becomes more frequent-> more likely to see 

extremely popular pages ->  
▫ c gets smaller as well 



RGR - Preferential Attachment 
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• Due to copying mechanism: the probability of  
linking to a page is proportional to the total number  
of pages that currently link to that page! 

•  Preferential Attachment: restating rule 2 (b): 
▫ b) With probability (1- p), page j chooses page i with 

probability proportional to i’s current number 
of in-links and creates a link to i. 
�  links are formed “preferentially” to pages that  already 

have high popularity. 



RGR - Preferential Attachment 
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Rich-Get-Richer: 
1.  Pages are created in order and named 1, 2, …, N. 
2.  When page j is created, it produces a link to an  

earlier page i < j according to the following  
rules: 

a)  With probability p, page j chooses page i uniformly  
at random and creates a link to i. 

b)  With probability (1- p), page j chooses page i with  
probability proportional to i’s current number  
of in-links and creates a link to i. 



RGR - Probabilistic Model 
•  Probabilistic model 
▫  Xj(t): number of in-links to node j at a time t 

 
•  Two points about Xj(t) 

1.  Value of Xj(t) at time t=j 
�   Xj(j) = 0 

�  node j starts with 0 in-link when it’s first created at time j! 
2.  Expected Change to Xj(.) over time 

24 

Compute the probability that node j gains an in-link in step t+1? 



RGR - Probabilistic Model 
•  Expected Change to Xj(.) over time 
▫  Probability that node j gains an in-link in step t+1? 

25 



RGR - Probabilistic Model 
2.  Expected Change to Xj(.) over time 
▫  Probability that node j gains an in-link in step t+1? 
�  Happens if the newly created node t+1 points to node j. 
�  Two cases: 

1.  With probability p, node t+1 links to an earlier node chosen  
uniformly at random: 
▫  Thus, node t + 1 links to node j with probability 1/t 

2.  With probability 1 – p, node t+1 links to an earlier node with  
probability proportional to the node's current number of in-  
links. 
▫  At time t+1: 
▫  total number of links in the network? 
▫   t (one out of each prior node) 

▫  How many of them point to node j? 
▫  Xj(t) (based on the definition) 

▫  Thus, node t + 1 links to node j with probability Xj(t)/t. 

26 



RGR - Probabilistic Model 
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• Deterministic approximation 
▫  Approximate Xj(t)—the # of in-links 
of node j—by a continuous function of 
time xj(t).  
 
▫  Model for rate of growth: 
 
 
 



RGR - Probabilistic Model 
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•  Identifying power law in DA 
▫  For a given value of k and time t, what 
 fraction of nodes have at least k in-links at t, OR  
▫  For a given value of k and time t, what fraction 
of all js satisfy xj(t) >= k? 

Power law:  
The fraction of xj that are at least k is proportional to k−1/q. 



RGR - Probabilistic Model 
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• Explain power laws using the Rich-Get-Richer  
model: 
▫  Fraction of numbers receiving k calls per day: 1/k2 

▫  Fraction of books bought by k people: 1/k3 

▫  Fraction of papers with k citations: 1/k3 

▫  Fraction of cities with population k: 1/kc 
�  Cities grow in proportion to their size, simply as a result  

of people having children! 

• Once an item becomes popular, the rich-get-richer 
dynamics are likely to push it even higher! 



RGR - Unpredictability 
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•  If we replay the history: 
• Do you think the most popular items will 

remain the same as they are now? 

• Do we observe power law? 



RGR - Unpredictability 
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•  If we replay the history: 
• Do you think the most popular items will 

remain the same as they are now? 
•  Less likely 
•  Random effects early in the process play a role 

in the future popularity. 

• Do we observe power law? 
•  Power-law distribution of popularity would  

probably exist in each replay! 

How to properly investigate unpredictability in the contents of RGR? 



32 Source: Experimental study of inequality and unpredictability in an artificial cultural market. Salganik et. al. science  2006. 

• Music download site 
▫  48 obscure songs/bands. 
▫  >14K visitors 

�  can participate only once and can’t share opinions. 
▫  Visitors/subjects could listen and download songs 
▫  “download count" for each song is shown to visitors. 

�  the number of times it had been downloaded thus far. 
▫  Parallel World - two settings: 

1.  Visitors upon arrival were being assigned at random to  
one of 8 “parallel” copies of the site. 

2.  Visitors upon arrival were being assigned to a copy of 
the site in which “download counts” info was removed. 

RGR - Unpredictability 



• Music download site 

33 Source: Experimental study of inequality and unpredictability in an artificial cultural market. Salganik et. al. science  2006. 

RGR - Unpredictability 



34 Source: Experimental study of inequality and unpredictability in an artificial cultural market. Salganik et. al. science  2006. 

Experiment 1 
•  Social Influence: 
▫  Each visitor was given information only about the 

behavior of others in its copy of the site! 
�  Opportunity to contribute to RGR dynamics! 
�  Songs presented in grid & were not ordered by 

download counts! 
▫  The parallel copies started out identically 
�  same songs, download counts for all songs set to zero. 

•  Independent: 
▫  No direct contribution to RGR dynamics! 
▫  Songs presented in grid & in random order. 
 

RGR - Unpredictability 



35 Source: Experimental study of inequality and unpredictability in an artificial cultural market. Salganik et. al. science  2006. 

RGR - Unpredictability 

Subjects could participate only once and could not share opinions. 



36 Source: Experimental study of inequality and unpredictability in an artificial cultural market. Salganik et. al. science  2006. 

Experiment 2 
•  Social Influence: 
▫  Each visitor was given information only about the 

behavior of others in its copy of the site! 
�  Opportunity to contribute to RGR dynamics! 
�  Songs presented in one column & in 

descending order of download counts! 
▫  The parallel copies started out identically 
�  same songs, download counts for all songs set to zero. 

•  Independent: 
▫  No direct contribution to RGR dynamics! 
▫  Songs presented in one column & random order. 

RGR - Unpredictability 



37 Source: Experimental study of inequality and unpredictability in an artificial cultural market. Salganik et. al. science  2006. 

RGR - Unpredictability 

Subjects could participate only once and could not share opinions. 



38 Source: Experimental study of inequality and unpredictability in an artificial cultural market. Salganik et. al. science  2006. 

RGR - Unpredictability 



39 Source: Experimental study of inequality and unpredictability in an artificial cultural market. Salganik et. al. science  2006. 

RGR - Unpredictability 



• Music Unknownness! 

40 Source: Experimental study of inequality and unpredictability in an artificial cultural market. Salganik et. al. science  2006. 

RGR - Unpredictability 

These results, along with screening, led authors believe that the music used in the 
experiment was essentially unknown. 



41 Source: Experimental study of inequality and unpredictability in an artificial cultural market. Salganik et. al. science  2006. 

RGR - Unpredictability 

1.  The	social	influence	worlds	exhibit	greater	inequality—popular	songs	are	more	popular	and	unpopular	songs	are	less	popular—than	the	
independent	world.		

2.  Inequality	increased	from	experiment	1	to	experiment	2:	not	only	that	social	influence	contributes	to	inequality,	but	as	individuals	are	
subject	to	stronger	forms	of	social	influence,	the	collective	outcomes	will	become	increasingly	unequal.	



42 Source: Experimental study of inequality and unpredictability in an artificial cultural market. Salganik et. al. science  2006. 

RGR - Unpredictability 

•  the	average	difference	in	market	share	for	a	song	between	distinct	social	influence	worlds	is	higher	than	it	is	between	different	
subpopulations	of	individuals	making	independent	decision	



43 Source: Experimental study of inequality and unpredictability in an artificial cultural market. Salganik et. al. science  2006. 

RGR - Unpredictability 
•  On average, quality is 

positively related to 
success. 

•  Songs of any given quality 
can experience a wide 
range of success. 

•  The best songs never do 
very badly, and the worst 
songs never do extremely 
well, but almost any other 
result is possible.  

•  Unpredictability also 
varies with quality, the 
best songs are the most 
unpredictable, whereas 
when measured in terms 
of rank, intermediate 
songs are the most 
unpredictable. 



Reading 
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• Ch.18 Power Laws and Rich-Get-Richer Phenomena  
[NCM] 

• Experimental study of inequality and 
unpredictability in an artificial cultural market. 
Salganik et. al. Science’06. 


