Text Processing - Basics

Advanced Social Computing

Department of Computer Science University of Massachusetts, Lowell Spring 2020

Hadi Amiri <u>hadi@cs.uml.edu</u>

Announcement

• SP1 out

^{Due Date: 3/25, 3:30 PM}

Lecture Topics

Text Data

- Learning word vectors
 - Word2vec
 - Glove
- Evaluating word vectors
- Retrofitting word vectors

Text Processing!

- Tokenization
- Normalization
 - urls, hashtags, punctuations, numbers, dates, cases, stop words, etc.
 - Spell correction
- Morphological analysis
 - Stemming, lemmatization, etc.
- Syntactic analysis
- Semantic analysis
- Discourse analysis

Text Processing!

- Tokenization
- Normalization
- Morphology
- Syntax
- Semantic
- Discourse

Text cleaning is a very important first step! But there is no general rule.

- Is it safe to remove punctuations or stop words from text?
 - "switching from Verizon" vs.
 "switching to Verizon."
- Or convert all characters to lowercase?
 - "Bush" vs. "bush."
- Or remove all numbers?
 - "7 yrs old" vs. "70 yrs old."
- **General rule**: Use the exact same cleaning technique for all competing models.

Many Interesting Applications

- Search
- Information Extraction
- Question Answering
- Machine Translation
- Summarization
- Dialogue Systems
- Text Classification
 - Emails: spam, not-spam.
 - News articles: business, health, sports, tech, etc.
 - Reviews: positive, negative, neutral.
 - Word pairs: synonyms or not.
 - Essays as: A, B, C, D, or F
 - Etc.

Input

Output

Text Classification

- Let's say we have:
 A set of documents
 - **X**={ $x_1,..., x_n$ }
 - •A set of labels or predicted classes
 - $\mathbf{Y} = \{Class-1, \dots, Class-k\}$
 - "We know the label for each document
 - $(x_1, y_1), \dots, (x_n, y_n)$
 - We aim to learn a function *f* (classifier) that can map inputs to their corresponding outputs
 - $\cdot f: \mathbf{X} \rightarrow \mathbf{Y}$

• X={ i love verizon's coverage , actually t-mobile has great deals, i hate t-mobile! One more bill!!, i cant take it anymore! hate verizon}

- X={ i love verizon's coverage, actually t-mobile has great deals, i hate t-mobile! One more bill!!, i cant take it anymore! hate verizon}
 Y={+1, -1}
- {(x₁, y₁), (x₂, y₂), ..., (x₄, y₄)}= {(i love verizon's coverage, +1), (actually t-mobile has great deals, +1), (i hate t-mobile! One more bill!!, -1), (i cant take it anymore! hate verizon, -1) }

X={ i love verizon's coverage, actually t-mobile has great deals, i hate t-mobile! One more bill!!, i cant take it anymore! hate verizon}
Y={+1, -1}

) = +1

- f(i love verizon's coverage
- f(actually t-mobile has great deals) = +1
- f(i hate t-mobile! One more bill!!) = -1
- f(i cant take it anymore! hate verizon) = -1

Classification: the output variable takes class labels, i.e. Y={-1,+1} **Regression**: the output variable takes continuous values, i.e. Y=[-1,+1].

Why do we need to learn *f*?

cant wait to leave verizon for t-mobile! one more bill!!

i cant take it anymore, the unlimited data isnt even worth it. my days with verizon are numbered.

verizon: i will change carriers as soon as contract is up.

verizon your customer service is horrible. this loyal customer will be gone.

 $=\mathbf{Y}$

How can we determine *f*?

How can we determine f

- Given $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$, we aim to find f(.)!
- An ideal f(.) is a function such that
 f(x_i) = y_i for all i
 Hard to find, why?
 We just expect f(x_i) to be very close to y_i.

У	f(x)	$error = (y - f(x))^2$
+1	+1	0
-1	-1	0
+1	-1	4
-1	+1	4

Loss function $l(y_i, f(x_i)) = (y_i - f(x_i))^2$ $\sum_i l(y_i, f(x_i)) = \sum_i (y_i - f(x_i))^2$

zero error when prediction and actual label are the same, Non-zero, otherwise!

How can we determine *f*- Cnt.

• Given $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ we aim to find a function f(.) that minimizes the error

$$L(x,y) = \sum_{i}^{n} l(y_i, f(x_i))$$

- Three popular loss functions
 - Squared loss (linear classifier)
 - Hinge loss (the SVMs),
 - Logistic loss (logistic classifier)

How can we determine *f*- Cnt.

• Three popular loss functions $L(x,y) = \sum_{i} l(y_i, f(x_i))$ • Squared loss (linear classifier) $L(x,y) = \sum_{i} l(y_i, f(x_i))$

$$l(y, f(x)) = (y - f(x))^2$$

Hinge loss (the SVMs)

$$l(y, f(x)) = max(0, 1 - y.f(x))$$

• Logistic loss (logistic classifier) l(y, f(x)) = log(1 + exp(-y.f(x)))

Text Representation

• What is a good way to represent the input text?

• Features

•How to classify objects such as People and Cars?

We use *features / characteristics* of those objects!

- Knowledge about features that make good predictors of class membership!
 - having wheels or not distinguishes people from cars, but doesn't distinguish cars from planes.

- X={ i would love verizon coverage, i hate verizon one more bill, i hate verizon}
 Y={+1, -1} Bag of Word representation
 - Features=[i, would, love, verizon, coverage, hate, one, more, bill]

- X={ i would love verizon coverage, i hate verizon one more bill, i hate verizon}
 Y={+1, -1}
- Features=[i, would, love, verizon, coverage, hate, one, more, bill]

								Featur	re Weig	<u>;hts</u>
	i	would	love	verizon	coverage	hate	one	more	bill	
X ₁	1	1	1	1	1	0	0	0	0	
X ₂	1	0	0	1	0	1	1	1	1	
X ₃	1	0	0	1	0	1	0	0	0	

- Bag of Word representation
- X={ i would love verizon coverage, i hate verizon one more bill, i hate verizon}
- Y={+1, -1}

Sentiment Words

• Features={would, love, hate}

	would	love	hate
X ₁	1	1	0
X ₂	0	0	1
X ₃	0	0	1

• Other ways of representation?

• Other ways to set weights?

- How to encode semantics?
 - Suggest & recommend
 - Pretty & beautiful
 - Etc.

Vowpal Wabbit (VW)

UMASS

- Vowpal Wabbit:
 - Fast learning
 - Simplicity
 - Namespace definition
 - Easy Ablation Analysis

http://hunch.net/~vw/

Label [Importance] [Base] ['Tag] |Namespace Feature ... |Namespace Feature ...

Namespace = A letter like 'a', 'b', 'c', ... Feature = String[:Float]

Vowpal Wabbit (VW)

- Vowpal Wabbit:
 - •Fast learning
 - Simplicity
 - Namespace definition
 - Easy Ablation Analysis

- +1 |a i would love verizon coverage
- -1 |a i hate verizon one more bill
- -1 |a i hate verizon

|b would love |b hate |b hate

Vowpal Wabbit (VW)

UMASS

- Vowpal Wabbit:
 - •Fast learning
 - Simplicity
 - Namespace definition
 - Easy Ablation Analysis

Namespace a

Namespace b

Test and Training Data

Test and Training Data- Cnt.

How to create test and training data?
Use k-fold cross validation, k=3 or 5

Evaluation

Commonly-used evaluation metrics

Scoring	Function	Comment
Classification		
'accuracy'	metrics.accuracy_score	
'balanced_accuracy'	<pre>metrics.balanced_accuracy_score</pre>	
'average_precision'	<pre>metrics.average_precision_score</pre>	
'neg_brier_score'	<pre>metrics.brier_score_loss</pre>	
'f1'	metrics.f1_score	for binary targets
'f1_micro'	metrics.f1_score	micro-averaged
'f1_macro'	metrics.f1_score	macro-averaged
'f1_weighted'	metrics.f1_score	weighted average
'f1_samples'	metrics.f1_score	by multilabel sample
'neg_log_loss'	metrics.log_loss	requires <preprint pre="" proba="" support<=""></preprint>
'precision' etc.	metrics.precision_score	suffixes apply as with 'f1'
'recall' etc.	metrics.recall_score	suffixes apply as with 'f1'
'jaccard' etc.	<pre>metrics.jaccard_score</pre>	suffixes apply as with 'f1'
'roc_auc'	<pre>metrics.roc_auc_score</pre>	
'roc_auc_ovr'	<pre>metrics.roc_auc_score</pre>	
'roc_auc_ovo'	<pre>metrics.roc_auc_score</pre>	
'roc_auc_ovr_weighted'	<pre>metrics.roc_auc_score</pre>	
'roc_auc_ovo_weighted'	<pre>metrics.roc_auc_score</pre>	
Clustering		
'adjusted_mutual_info_score'	<pre>metrics.adjusted_mutual_info_score</pre>	
'adjusted_rand_score'	<pre>metrics.adjusted_rand_score</pre>	
'completeness_score'	metrics.completeness_score	
'fowlkes_mallows_score'	<pre>metrics.fowlkes_mallows_score</pre>	
'homogeneity_score'	<pre>metrics.homogeneity_score</pre>	
'mutual_info_score'	<pre>metrics.mutual_info_score</pre>	
'normalized_mutual_info_score'	<pre>metrics.normalized_mutual_info_score</pre>	
'v_measure_score'	<pre>metrics.v_measure_score</pre>	
Regression		
'explained_variance'	<pre>metrics.explained_variance_score</pre>	
'max_error'	metrics.max_error	
'neg_mean_absolute_error'	<pre>metrics.mean_absolute_error</pre>	
'neg_mean_squared_error'	<pre>metrics.mean_squared_error</pre>	
'neg_root_mean_squared_error'	<pre>metrics.mean_squared_error</pre>	
'neg_mean_squared_log_error'	<pre>metrics.mean_squared_log_error</pre>	
'neg_median_absolute_error'	<pre>metrics.median_absolute_error</pre>	

Evaluation – Cnt.

• Precision, Recall, F1-Score

relevant elements

F1 is the harmonic mean of precision and recall

Evaluation – Cnt.

• Precision, Recall, F1-Score

relevant elements

In which applications precision or recall is more important than the other?

Quick Reference

