Network Basics 1

Graph ML

Department of Computer Science
University of Massachusetts, Lowell

Hadi Amiri
hadi@cs.uml.edu

Lecture Topics

« Graph Theory
= Node degree
= Graph density
= Complete Graph
= Distance and Diameter
= Adjacency matrix
= Graph Connectivity
= Reachability
= Sub-graphs
= Graph Types

Graph Theory

- A graph consists of
= N: a set of nodes (items, entities, people, etc), and
= E: a set of links or edges between nodes

- Graph is a way to specify relationships / links
amongst a set of nodes.

« We define
« N=|N| > sizeof N
« E=|E| > sizeof E

Graph Theory. Cnt.

- Nodes i and j are adjacent or neighbors if:
= There is an edge btw them!
1eN
jeN
- (1,))eE

/A

Sample Graphs 1. et

Actor Lives near:
n; Allison Ross, Sarah

« “Lives Near” Graph Dew (Hi

ny Drew
ng Keith Ross, Sarah
ns Ross Allison, Keith, Sarah
ng Sarah Allison, Keith, Ross
nodes
Iy = (ny,ns)
[y = (ny,ne)
) I3 = (n3,n3)
Links or edges T l=(un
Is = (ng,ng)
lg = (ns,ng)

n = Allison

Graph ng = Sarah n, = Drew

ng= Ross ny= Eliot

ny = Keith

Source: Social network analysis: Methods and applications. Wasserman, Stanley. Cambridge university press, 1994.

/A

Node Degree d(l) UMASS

Actor Lives near: Degree
. n; Allison Ross, Sarah 2
 Given Node 1, its degree n I e !
" 1. ng Keith Ross, Sarah P
d (l) 1S. ns Ross Allison, Keith, Sarah 3
. ng Sarah Allison, Keith, Ross
> the number nodes adjacent 3
to 1t. Iy = (ny,ns)
Iy = (ny,ng)
I3 = (n3,m3)
Iy = (ng,ns)
Is = (ng,ng)
Ib - ("5v"6)
n, = Allison
ng = Sarah n, = Drew
ng= Ross ny= Eliot
n, = Keith

Source: Social network analysis: Methods and applications. Wasserman, Stanley. Cambridge university press, 1994.

Graph Density

- How many edges are possible?

Graph Density- Cnt.
(N-1) + (N-2) +(N-3) +...+1=N(N-1) / 2

P

Graph Density- Cnt.

- Graph Density of a given graph G is determined by:

= the proportion of all possible edges that are present in
the graph.

= with N nodes and E edges, graph density is:

Density =2 *E / N * (N-1)

Complete Graph

- If all edges are present, then all nodes are adjacent
(neighbors), and the graph is a Complete Graph.

What is the density of a complete graph?

Distance and Diameter

- Distance btw node i and j: d(i,))

= length of the shortest path between i and j
- Diameter of a graph

= the maximum value of (i) for all 1 and j

The path with min number of edges.

Distance and Diameter- Cnt.

distance
d1,2)=1
. d(1,3) =1
d(1,4) =2
d(1,5)=3
d(2,3)=1
d2,4) =1
d(2,5) =2
ng d(3,4) =1
d(3,5)=2
d4,5)=1

Diameter of graph = max d(i, j) = d(1,5) = 3

What is the distance and diameter of a complete graph?

Source: Social network analysis: Methods and applications. Wasserman, Stanley. Cambridge university press, 1994.

A

Adjacency Matrix unAss
n, Ny Ny N3 Ng Ng
nfO 1 1 0 0)
ng n, Ny 1 0 1 1 0
A= o l1 1 0 1 o0
o 1 1 0 1
" ? O 0 0 1 0_

- Each row or column represents a node!

A=AT
Properties of adjacency matrix - next session

Graph Connectivity

 Indirect connections between nodes:
= Walks
= Trails
= Paths

Graph Connectivity- Cnt.

« Walk

= A sequence of nodes and edges that starts and ends
with nodes where each node is incident to the edges
following and preceding it.

o Trail
= A trail is a walk with distinct edges

- Path
= A path is a walk with distinct nodes & edges.

- The length of a walk, trail, or path is the number of
edges in it.

Graph Connectivity- Cnt.

« Walk

= A sequence of nodes and edges that starts and ends
with nodes where each node is incident to the edges
following and preceding it.

ny = Jeff

A

UMASS
LOWELL

Source: Social network analysis: Methods and applications. Wasserman, Stanley. Cambridge university press, 1994.

A

Graph Connectivity- Cnt. s

- Walk
= A sequence of nodes and edges that starts and ends
with nodes where each node is incident to the edges
following and preceding it.

n5=Joe

Sample Walk:
W=n,I,n,1;n,1; n,

Source: Social network analysis: Methods and applications. Wasserman, Stanley. Cambridge university press, 1994.

Graph Connectivity- Cnt.

e Trail
= A trail is a walk in which all edges are distinct,
although some node(s) may be included more than
once.

ny = Jeff

A

UMASS
LOWELL

Source: Social network analysis: Methods and applications. Wasserman, Stanley. Cambridge university press, 1994.

/A

Graph Connectivity- Cnt. s

e Trail
= A trail is a walk in which all edges are distinct,
although some node(s) may be included more than

once.
l l,
ng = Joe n, = Jack
Sample Trail:

T=n,l;n,1,n,I.n,1, n,

Source: Social network analysis: Methods and applications. Wasserman, Stanley. Cambridge university press, 1994.

Graph Connectivity- Cnt.

« Path

= A path is a walk in which all nodes and all edges are
distinct.

ny = Jeff

A

UMASS
LOWELL

Source: Social network analysis: Methods and applications. Wasserman, Stanley. Cambridge university press, 1994.

A

Graph Connectivity- Cnt. s

- Path
= A path is a walk in which all nodes and all edges are

distinct.
ny = Jeff
/ \
ll / n3 = Je'Ty
ns = Joe n, = Jack ng =Jim I
Sample Path:

P=n,I,n,l; n,

Source: Social network analysis: Methods and applications. Wasserman, Stanley. Cambridge university press, 1994.

A

Graph Connectivity- Cnt. s

» Is this a Walk? Trail? Path?
= We call a closed path is a Cycle!

ng = Joe n, = Jack

n,l,n,l.n,1, n,

Source: Social network analysis: Methods and applications. Wasserman, Stanley. Cambridge university press, 1994.

Reachability

- If there is a path between nodes i and j, then 1
and j are reachable from each other.

n

Connected Graph

- A graph is connected if every pair of its nodes
are reachable from each other

= 1.e. there is a path between them.

n, n
Mg n e n,
n
- n.‘
Disconnected Graph Connected Graph
How can we make this graph connected? and this graph disconnected?

A

UMASS
LOWELL

Source: Social network analysis: Methods and applications. Wasserman, Stanley. Cambridge university press, 1994.

Sub-graphs

« Graph G,1is a sub-graph of G if its nodes and edges
are a subset of G’s nodes and edges respectively.

Sub-graphs- Cnt.

« Graph G,1is a sub-graph of G if its nodes and edges
are a subset nodes and edges of G respectively.

Graph Types

- Several types of graphs:
= Bipartite graphs
= Digraphs
= Multigraphs
= Hypergraphs
= Weighted/Signed

Graph Types- Bipartite Graphs

- A bipartite graph is an undirected graph in which
= nodes can be partitioned into two (disjoint) sets IV,
and N, such that:
* (u, v) € Eimplies either u € N, and v € N, or vice
versa
= So, all edges go between the two sets N, and N, but
not within N, or V..

N,=movies N,=actors

Graph Types- Digraphs

- Digraphs or Directed Graphs
= Edges are directed
- Adjacency:
= There is a direct edge btw nodes!
1eN
jeN
- (1,)) e E

Graph Types- Digraphs- Cnt.

- Node Indegree and Outdegree

= Indegree

 The indegree of a node, d,(7), is the number of nodes
that link to 1,

= Qutdegree

 The outdegree of a node, dy(7), is the number of nodes
that are linked by 1,

- Indegree: number of edges terminating at 1.
» Outdegree: number of edges originating at 1.

/A

Graph Types- Digraphs- Cnt. e

N . o) -y
Aglson Drew y j=1
/—> 0 1 0 0 1 0) |2
1,
Eliot / 00100 1]]|2
® n41 A= |0 1000 0]1
iy —
;‘“ 0 00 01 o0]1!1
) / 000 00 1|1
5
Ross._/ ® \O 10 00 O-) !
Sarah L
P dl(”j)=2 0|3 |1 |0 |2 |2
4
i=1

Al=AT

Graph Types- Digraphs- Cnt.

» Density of Digraph:
= Number of all possible edges in Digraph?

« N *(N-1)
1, n,
Alliy——\Dré\v
@ o
n3 /
Eliot.
1,
E Keith

Graph Types- Digraphs- Cnt.

- Connectivity
= Walks
= Trails
= Paths

» The same as before just links are directed!

Graph Types- Multigraphs

« A Multigraph (or multivariate graph) G consists of:
= a set of nodes, and
= two or more sets of edges, E*=<{E_, E,, ..., E,.}, ris
the number of edge sets.

Multigraph 1.

Road
O Roaad & Rail
O Rail
Simple Graphs Multigraph

Source: the geography of transport systems

Multigraph 2.

Graph Types- Multigraphs- Cnt.

- Number of edges btw any two nodes in a
multigraph?
« E+={E_, E,, ..., E.}, r1s the number of sets of edges
* Undirected multigraph

* lo, 1]
» Directed multigraph
- [0, 2%r]

Graph Types- Hypergraphs

- A hypergraph is a graph in which an edge can
connect any number of nodes.

- In a hypergraph, E is a set of non-empty subsets of
N called hyperedges.

Graph Types- Hypergraphs- Cnt.

- A hypergraph is a graph in which an edge can
connect any number of nodes.

- In a hypergraph, E is a set of non-empty subsets of
N called hyperedges.

N={v,, V,, V3, V,, Vi, Vg, V)
E={e, e,, €5, €,}=

{{Vv Vo, V3}, {Vza V3}, {V3, V5, V6}a {V4}}

A

Graph Types- Hypergraphs- Cnt. =

- Applications:
- Recom. systems (communities as edges),
- Image retrieval (correlations as edges),
» Bioinformatics (interactions or semantic
types as edges).

N={v,, V,, V3, V,, Vi, Vg, V)
E={e, e,, €5, €,}=

{{Vv Vo, V3}, {Vza V3}, {V3, V5, V6}a {V4}}

Weighted/Signed Graphs

- Edges may carry additional information
= Tie strength - how good are two nodes as friends?
= Distance - how long is the distance btw two cities?

= Delay 2 how long does the transmission take btw
two cities?

= Signs 2 two nodes are friends or enemies?

Reading

 Ch. 22 Elementary Graph Algorithms [CLRS]

Network Basics 2

Graph ML

Department of Computer Science
University of Massachusetts, Lowell

Hadi Amiri
hadi@cs.uml.edu

Lecture Topics

» Connected Components

 Breadth-First Search

 Depth-First Search

 Shortest Path Algorithm
= Dijkstra’s algorithm

/A

Connected Components e

- Connected component of a graph is a subset of
nodes such that:

= every node in the subset has a path to every other;
and

> the subset is not part of a bigger component.

\
(e) /

Connected Components

- Connected component of a graph is a subset of
nodes such that:

= every node in the subset has a path to every other;
and

> the subset is not part of a biggereomponent.

Figure 2.5: A graph with three connected components.

Connected Components- Cnt.

ole
‘.
NVl P T 0
‘\ ’4 \ :‘ : \
- + Y - FO
g . &F x"'&"o-‘f*::#‘ AT Sl .—:;4 r{\o
Ny SFRE W/
b ’5* R .S
‘ ZeR.
g LN E——— 1

/A

Connected Components- Cnt. e

ol
q‘\:}’.—
e 4 !
o ‘: 9294, /
t;‘:ﬂ o 1L ,:“‘_.«4 \"
g kTR o X
\J]
e S R g /]
-7 e % o
B R 2 o aC N <
¢ i o
5 én ' . T

Female

‘ \ 63

Figure 2.7: A network in which the nodes are students in a large American high school, and
an edge joins two who had a romantic relationship at some point during the 18-month period
in which the study was conducted [49].

Breadth & Depth-First Search

« General techniques for traversing graphs!
= Start from a given node s (i.e. start node) and visit all
nodes and edges in the graph.
- Compute the connected components of graph!

= Use components to determine whether graph is
connected!

- How?

= Use components to determine if there is a path btw
node pairs!
- How?

Breadth-First Search

» Start with s

- Visit all neighbors of s
= these are called level-1 nodes

- Visit all neighbors of level-1 nodes
o these are called level-2 nodes

» Repeat until all nodes are visited.
= Each Node is only visited once.

- Key Point:
= All level-k nodes should be visited before any level-
(k+1) node!

Example 1.
» Graph G:

 Its BFS traversal:

Example 1. BFS -Cnt.

« BFS traversal:
= Distance to root at
level-1?
s Components?
- Connectivity?
 Paths?

distance 1

distance 2

distance 3

Depth-First Search

« Starts from s

- Explores as far as possible along each branch before
backtracking.
- Visit a neighbor of s [say v,]
- Visit a neighbor of v, [say v,]
- Repeat until all nodes are visited.

Shortest Path Algorithms

- Given a weighted directed graph and two nodes s
and t, find the shortest path from s to t.

= Cost of path = sum of edge weights in path

Shortest Path Algorithms- Cnt.

« Dijkstra’s algorithm

» The Bellman-Ford algorithm

- The Floyd-Warshall algorithm
- Johnson's algorithm

 Etc.

Shortest Path Algorithms- Cnt.

- Shortest path from s to ¢?

Shortest Path Algorithms- Cnt.

*_ 23
9
18
14 5 6
30 /rq 19
11
15 5
6
20 16
44

 Shortest Path= s-2-3-5-t
» Cost of path = 9 + 23 + 2 + 16 = 48.

Shortest Path Algorithms- Cnt.

- Applications
= Small World Phenomenon
= Internet packet routing
= Flight reservations
= Driving directions

Dijkstra algorithm
- Weighted Directed graph G = (N, E),

s §: source node
= t: target node
@ [, weight of the edge btw nodes u and v
s d(u): shortest path distance from s to u.
- sum of edge weights in path

- We aim to compute d(t)!

d(u) b"v a
P 0
e ¢ @ @ 4

Dijkstra algorithm- Cnt.

« Initialization?
= d(s) =0
= d(u)= o for all other nodes

Dijkstra algorithm- Cnt.

« To find the shortest path from s to t:

= Maintain a set of explored nodes S for which we
have determined the shortest path distance from s to
any u € S.

» Repeatedly expand S.

Dijkstra algorithm- Cnt.

- Repeatedly expand S?
= Repeatedly update d(.) for the unexplored

nodes: if d(v) > d(u) + 1,

= add v with smallest d(v) to S.

Dijkstra algorithm- Cnt.

ed(s)<— O

- foreachve N - {S} Set of explored nodes
sdo d(v) < =

oS «— U Set of unexplored nodes

* Q< N r (Qisaset maintaining N — S
» while Q=0
o o u < EXTRACT- MIN(Q)‘\ Returns node u € Q that
S~ SU { I/l} \has minimum d(u)
 for each v € A4 d](u) Add it to explored nodes
-+ do if d(v) > d(u) + I, }
o thend(v) < d(u)~+1,, K Update d(.) for all

neighbors of u: this is
called relaxation!

Example 1.

ed(s)<— O
- foreachve N — {s}
cdo d(v) <=
oS~ O
o Q ~— N
» while Q =
s do u <= EXTRACT-MIN(Q)
+ S« SU {u}
- for cach v € Adj(u)
~do if d(v) > d(u) + 1,
then d(v) < d(u) + 1,

Example 1.

ed(s)<~ © 10 2

- foreachve N — {s}

-do d(v) — o 0@{ ! A
» while Q = oo -
o do u < ExTRACT-MIN(Q)
+ S« SU {u} S={}
- for each v € Adj(u) Q={s,b, c, d, e}
*doifd(v)>d(u)+1,,
then d(v) <= du)~+1, ,

Example 1.

ed(s)<— O
« foreachve N — {s}
cdod(v) <
oS~ O
e while Q= 0 -
M- dou < ExRACT-MN(Q)
+ S« SU {u} S={}
- for each v € Adj(u) Q={b, c,d, e}
*doifd(v)>d(u)+1,,
then d(v) <~ du)+1,,

Example 1.

ed(s)<— O
« foreachve N — {s}
cdod(v) <
S U
e while Q= 0 -
o do u < ExTRACT-MIN(Q)
+ S« SU {u} S={s}
- for each v € Adj(u) Q={b, c,d, e}
*doifd(v)>d(u)+1,,
then d(v) <= du)~+1, ,

Example 1.

ed(s)<— O

- foreachve N — {s}
cdo d(v) <=

eS<— U

o Q ~— N

» while Q =
o do u < ExTRACT-MIN(Q)

+ S« SU {u} S={s}

- for each v € Adj(u) Q={b, c,d, e}
‘ *doifd(v)>d(u)+1,,

then d(v) <= du)~+1, ,

Example 1.

ed(s)<— O
« foreachve N — {s}
cdod(v) <
S U
o Q ~— N
e while Q=
M- dou < ExRACT-MN(Q)
+ S« SU {u} S={s}
- for each v € Adj(u) Q={b, d, e}
*doifd(v)>d(u)+1,,
then d(v) <= du)~+1, ,

Example 1.

ed(s)<— O
« foreachve N — {s}
cdod(v) <
S U
o Q ~— N
e while Q=
o do u < ExTRACT-MIN(Q)
« S« SU {u} S={s, c}
- for each v € Adj(u) Q={b, d, e}
*doifd(v)>d(u)+1,,
then d(v) <= du)~+1, ,

Example 1.

ed(s)<— O
- foreachve N — {s}

-do d(v) — = o@(
oS~ U 3

. Qe N
» while Q=0
o do u <— EXTRACT-MIN(Q)
+ S« SU {u}

- for each v € Adj(u)
‘ *doifd(v)>d(u) +1,
° thend(v) < du)+/,

Example 1.

ed(s)<— O
- foreachve N — {s}

-do d(v) — = o@(
oS~ U 3

. Q ~— N
» while Q =
‘ o do u <— EXTRACT-MIN(Q)
+ S« SU {u}
- for each v € Adj(u)
*doifd(v)>d(u)+1,,
then d(v) <= du)~+1, ,

Example 1.

ed(s)<— O
- foreachve N — {s}

-do d(v) — = o@(
oS~ U 3

. Q ~— N
» while Q =
o do u <— EXTRACT-MIN(Q)
+ S« SU {u}
- for each v € Adj(u)
*doifd(v)>d(u)+1,,
then d(v) <= du)~+1, ,

Example 1.

ed(s)<— O
- foreachve N — {s}

-do d(v) — = o@(
oS~ U 3

. Qe N
» while Q=0
o do u <— EXTRACT-MIN(Q)
+ S« SU {u}

- for each v € Adj(u)
‘ *doifd(v)>d(u) +1,
° thend(v) < du)+/,

Example 1.

ed(s)<— O
- foreachve N — {s}

-do d(v) — = o@(
oS~ U 3

. Q ~— N
» while Q =
m) - do u < ExmRACT-MIN(Q)
+ S« SU {u}
- for each v € Adj(u)
~do if d(v) > d(u) + 1.,
then d(v) < d(u) +1,

Example 1.

ed(s)<— O
« foreachve N — {s}
cdod(v) <
S U
o Q ~— N
e while Q=
sdo u <— EXTRACT-MIN(Q)
+ S« SU {u}
» for cach v € Adj(u) Q={d}
*doifd(v)>du)+1,
then d(v) < du)+/,,

Example 1.

ed(s)<— O

- foreachve N — {s}
cdod(v) <

eS<— U

er N

e while Q=

sdo u <— EXTRACT-MIN(Q)
+ S« SU {u}

» for cach v € Adj(u) Q={d}
‘ *doifd(v)>du)+1,

then d(v) < d(u)+1,, ,

Example 1.

ed(s)<— O
- foreachve N — {s}

-do d(v) — = o@(
oS~ U 3

. Q ~— N
» while Q =
m) - do u < ExmRACT-MIN(Q)
+ S« SU {u}
- for each v € Adj(u) Q=0
~do if d(v) > d(u) + 1.,
then d(v) < d(u) +1,

Example 1. 7

d(s)«< o . (b) 2

- foreachve N — {s}

(
cdo d(v) <= 0<;§ 1 4 87 9

Q< N —~(e)
» while Q=0 3 %
o do u <— EXTRACT-MIN(Q) >
‘ - S« SU {u} S={s,c, e, b,d}
- for each v € Adj(u) Q=0

-+ do if d(v) > d(u) + I, .,
then d(v) < d(u)+1,

Example 1. 7

d(s)«< o . (b) 2

- foreachve N — {s}

(
cdo d(v) <= 0<;§ 1 4 87 9

Q< N —~(e)
» while Q = 3 %
o do u <— EXTRACT-MIN(Q) >
+ S« SU {u} S={s, c, e, b,d}
- for each v € Adj(u) Q=0
‘ *doifd(v)>du)+1,
then d(v) < du)+/,

Example 1.

ed(s)<~ © 10 2

- foreachve N — {s}

(
cdo d(v) <= 0<;§ 1 4 87 9

Q< N =)
» while Q = 3 5
o do u <— EXTRACT-MIN(Q)
+ S« SU {u} S={s, c, e, b,d}
- for each v € Adj(u) Q=0

-+ do if d(v) > d(u) + I, .,
then d(v) < d(u)+1,

Dijkstra’s algorithm- Cnt.

« Dijkstra’s algorithm computes the shortest
distances btw a start node and all other nodes
in the graph (not only a target node)!

« Assumptions:
s the graph is connected, and
= the weights are nonnegative

Dijkstra’s algorithm- Analysis

ed(s)<— O

- foreachve N — {s}
cdo d(v) <=
eS<— U

er N

e while Q=
o do u <— EXTRACT-MIN(Q)

* S< SU {u}
- for each v € Adw) - >tlilr:lf(les
*doif d(v) > d(u) + [, degree (w)
then d(v) < d(u) + 1/, .,

-

Time = © (V-Trxrracr-Min + E-TRelaxation) » Handshaking Lemma!

Dijkstra’s algorithm- Analysis- Cnt.

Time=0 (V- TEXTRACT—MIN +E'TRelaxation)

Q Tgxrracr-MiN IDecrease-Key —lotal

Array O(IN) O(1) O(N?)

Reading

» Ch.24 Single Source Shortest Paths [CLRS]

Network Basics 3

Graph ML

Department of Computer Science
University of Massachusetts, Lowell

Hadi Amiri
hadi@cs.uml.edu

Lecture Topics

- Triadic closure and Bridges
 Neighborhood overlap
 The Strength of Weak Ties
» Structural Holes

« Node Centrality

- Edge Centrality

- Homophily

- Snapshot Algorithm

- Network Segregation

A

Triadic Closure e

- If two nodes in a network have a neighbor in
common, then there is an increased likelihood they
will become connected themselves.
» Reasons for Triadic Closure:

 Opportunity, Trust, Incentives

» Clustering Coefficient

= A measure to capture the prevalence
of Triadic Closure

= Defined for nodes

Number of connections btw A’s friends
CF(A) = =1/6

Possible Number of connections btw A’s friends

Bridge

- An edge is bridge if deleting it would put its two
ends into two different connected components.

= Bridges provide access to parts of the network that
are unreachable by other means!

Local Bridge

- An edge such that its endpoints have no friends in
common! - edge not in a triangle!

= deleting a local bridge increases the distance btw its
endpoints to a value strictly > 2.

The Strength of Weak Ties

- Weak ties (acquaintances) connect us to new
sources of information.

= This dual role - as weak connections but also valuable
links to hard-to-reach parts of the network - is the
surprising strength of weak ties.

LOWELL

>
Neighborhood Overlap Z

- A measure to capture bridgeness of an edge!

number of nodes who are neighbors of both A and B

number of nodes who are neighbors of at least one of A or B’

Don’t count A and B here!
Nodes Neighborhood overlap
- 2/4
- 1/6
A-B 0/8 (Overlap = 0 for

local bridges)

Edges with very small neighborhood overlap can
be considered as “almost” local bridges

7

Questions

1. Relation btw neighborhood overlap of an
edge and its tie strength?

Questions

1. Relation btw neighborhood overlap of an
edge and its tie strength?

» Neighborhood overlap should grow as tie strength
Grows.

Questions

2. How weak ties serve to link different communities
that each contain large number of stronger ties?

A

Questions 2

2. How weak ties serve to link different communities
that each contain large number of stronger ties?

* Delete edges from the network one at a time, start
with the weakest ties first!

- The giant component shrinks rapidly.

Structural Holes

Structural hole: the “empty space” in the net
btw 2 sets of nodes that don’t interact closely!

A node with multiple local B (
bridges spans a structural
hole in the net.

B :

A

UMASS
LOWELL

B has early access to info!

B is a gatekeeper and controls the
ways in which groups learn about
info. She has power!

B may try to prevent triangles
from forming around the local
bridges she is part of!

How long these local bridges last
before triadic closure produces
short-cuts around them?

Node Centrality

- Degree centrality
= A node is central if it has ties to many other nodes

- Closeness centrality
= A node 1s central if it 1s “close” to other nodes

- Betweenness centrality

= A node is central if other nodes have to go through it
to get to each other

/A

Edge Centrality Ustass

« Betweenness:

» Let’s assume 1 unit of “flow” will pass over all shortest
path btw any pair of nodes A and B.

- Betweenness of an edge is the total amount of flow t
carries!

- If there are k shortest path btw A and B, then 1/k units
of flow will go along each shortest path!

» Girvan-Newman Algorithm:

= Repeat until no edges are left:
» Calculate betweenness of edges
- Remove edges with highest betweenness

A

Homophily UMASS

- Links connect people with similar characteristics.
- Homophily has two mechanisms for link formation:

= Selection:
» Selecting friends with similar characteristics

- Individual characteristics drive the formation of links
- Immutable characteristics

= Social Influence (socialization)

- Modify behaviors to make them close to behaviors of
friends

- Existing links influence the individual characteristics of te
nodes

- Mutable characteristics

Homophily- Cnt.

- Focal Closure:
B and C people, A focus

» Selection: B links to
similar C (common
focus)

person
person

A

focus

(b) Focal closure

Homophily- Cnt.

« Membership Closure:
A and B people, C focus

e Social Influence: B~ B 4.
links to C influenced by A

person

A

Snapshot Algorithm s
Tracking link formation in large scale datasets based on the above mechanisms

1) Take 2 snapshots of network at different times:
S(1), S(2).

2) For each k, find all pairs of nodes in S(1) that are not
directly connected but have k common friends.

3) Compute T(k) as the fraction of these pairs connected
in S(2). K

estimate for the probability that a link will form
btw 2 people with k common friends.

4) PlOt T(k) as a function ()f k T(0) is the rate of link formation when

it does not close a triangle

/A

[.

Spatial Model of Segregation i

,
e

Schelling model

Local preferences of
individuals can produce
unintended global
patterns.

Effects of homophily

(a) Chicago, 1940 (b) Chicago, 1960

in the formation of ethnically
and racially homogeneous .

Color the map wrt to a given race:
neighborhoods in cities.

People live near others likethem!! --Darker: highest percentage of the race.

Questions’

(Optional) Reading

» Ch.02 Graphs [NCM]
» Ch.03 Strong and Weak Ties [NCM]

