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Lecture Topics 
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• Graph Theory 
▫  Node degree 
▫  Graph density 
▫  Complete Graph 
▫  Distance and Diameter 
▫  Adjacency matrix 
▫  Graph Connectivity 
▫  Reachability 
▫  Sub-graphs 
▫  Graph Types 



Graph Theory 
• A graph consists of 
▫  N: a set of nodes (items, entities, people, etc), and 
▫  E: a set of links or edges between nodes 

 
• Graph is a way to specify relationships / links  

amongst a set of nodes. 

•  We define 
•  N=|N| à   size of N 
•  E=|E| à   size of E 
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Graph Theory. Cnt. 
• Nodes i and j are adjacent or neighbors if: 
▫  There is an edge btw them! 
�  i є N 
�  j є N 
�   (i, j) є E 

i j 
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Sample Graphs 1. 
•  “Lives Near” Graph 

nodes 

Links or edges 

Graph 

5 Source: Social network analysis: Methods and applications. Wasserman, Stanley. Cambridge university press, 1994. 



Node Degree d(i) 
• Given Node i, its degree 

d(i) is: 
▫  the number nodes adjacent 

to it. 

Degree  
2 
1 
1 
2 
3 
3 

6 Source: Social network analysis: Methods and applications. Wasserman, Stanley. Cambridge university press, 1994. 



Graph Density 
• How many edges are possible? 

j 

a 

b 

c i 

d 
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Graph Density- Cnt. 
• (N-1) + (N-2) + (N-3) + … + 1 = N * (N-1) / 2 

j 

a 

b 

c i 

d 
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Graph Density- Cnt. 
• Graph Density of a given graph G is determined by: 
▫  the proportion of all possible edges that are present in 

the graph. 
▫  with N nodes and E edges, graph density is: 
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Density = 2 * E / N * (N-1) 



Complete Graph 
•  If all edges are present, then all nodes are adjacent  

(neighbors), and the graph is a Complete Graph. 

j 

a 

b 

c i 

d 
 
What is the density of a complete graph? 
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Distance and Diameter 
• Distance btw node i and j: d(i,j) 
▫  length of the shortest path between i and j 

• Diameter of a graph 
▫  the maximum value of d(i,j) for all i and j 

The path with min number of edges. 
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Distance and Diameter- Cnt. 

12 Source: Social network analysis: Methods and applications. Wasserman, Stanley. Cambridge university press, 1994. 

distance 

What is the distance and diameter of a complete graph? 



Adjacency Matrix 

• Each row or column represents a node! 
 
A = AT 

Properties of adjacency matrix à next  session 

n1 n2 n3 n4 n5 

n1 0 1 1 0 0 
n2 1 0 1 1 0 
n3 1 1 0 1 0 
n4 0 1 1 0 1 
n5 0 0 0 1 0 

A = 
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Graph Connectivity 
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•  Indirect connections between nodes: 
▫  Walks 
▫  Trails 
▫  Paths 



Graph Connectivity- Cnt. 
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• Walk 
▫ A sequence of nodes and edges that starts and ends  

with nodes where each node is incident to the edges  
following and preceding it. 

•  Trail 
▫  A trail is a walk with distinct edges 

•  Path 
▫  A path is a walk with distinct nodes & edges. 

•  The length of a walk, trail, or path is the number of  
edges in it. 



Graph Connectivity- Cnt. 
• Walk 
▫ A sequence of nodes and edges that starts and ends  

with nodes where each node is incident to the edges  
following and preceding it. 

16 Source: Social network analysis: Methods and applications. Wasserman, Stanley. Cambridge university press, 1994. 



Graph Connectivity- Cnt. 
• Walk 
▫ A sequence of nodes and edges that starts and ends  

with nodes where each node is incident to the edges  
following and preceding it. 

Sample Walk: 
W=n1 l2 n4 l3 n2 l3   n4 

17 Source: Social network analysis: Methods and applications. Wasserman, Stanley. Cambridge university press, 1994. 



Graph Connectivity- Cnt. 
•  Trail 
▫  A trail is a walk in which all edges are distinct,  

although some node(s) may be included more than  
once. 

18 Source: Social network analysis: Methods and applications. Wasserman, Stanley. Cambridge university press, 1994. 



Graph Connectivity- Cnt. 
•  Trail 
▫  A trail is a walk in which all edges are distinct,  

although some node(s) may be included more than  
once. 

Sample Trail: 
T=n4 l3 n2 l4 n3 l5 n4 l2    n1 

19 Source: Social network analysis: Methods and applications. Wasserman, Stanley. Cambridge university press, 1994. 



Graph Connectivity- Cnt. 
•  Path 
▫  A path is a walk in which all nodes and all edges are 

distinct. 

20 Source: Social network analysis: Methods and applications. Wasserman, Stanley. Cambridge university press, 1994. 



Graph Connectivity- Cnt. 
•  Path 
▫  A path is a walk in which all nodes and all edges are 

distinct. 

Sample Path: 
P=n1 l2 n4 l3  n2 

21 Source: Social network analysis: Methods and applications. Wasserman, Stanley. Cambridge university press, 1994. 



Graph Connectivity- Cnt. 
•  Is this a Walk? Trail? Path? 
▫  We call a closed path is a Cycle! 

n2 l4 n3 l5 n4 l3   n2 

22 Source: Social network analysis: Methods and applications. Wasserman, Stanley. Cambridge university press, 1994. 



Reachability 
•  If there is a path between nodes i and j, then i 

and j are reachable from each other. 
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Connected Graph 
• A graph is connected if every pair of its nodes 

are reachable from each other 
▫  i.e. there is a path between them. 
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Connected Graph 

and this graph disconnected? 

Disconnected Graph 

How can we make this graph connected? 

Source: Social network analysis: Methods and applications. Wasserman, Stanley. Cambridge university press, 1994. 



Sub-graphs 
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• Graph Gs is a sub-graph of G if its nodes and edges  
are a subset of G’s nodes and edges respectively. 



Sub-graphs- Cnt. 
• Graph Gs is a sub-graph of G if its nodes and edges  

are a subset nodes and edges of G respectively. 

a 

b 

c i 

G 

a 
d 

c 

d 

i Gs2 

a 

b 

c 

d 

i 
Gs1 
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Graph Types 
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•  Several types of graphs: 
▫  Bipartite graphs 
▫  Digraphs 
▫  Multigraphs 
▫  Hypergraphs 
▫  Weighted/Signed 



Graph Types- Bipartite Graphs 

b 

x 

y 

c 
 

z 
d 

• A bipartite graph is an undirected graph in which 
▫  nodes can be partitioned into two (disjoint) sets N1 

and N2 such that: 
�  (u, v) ∈  E implies either u ∈  N1 and v ∈  N2 or vice 

versa 
▫  So, all edges go between the two sets N1 and N2 but 
not within N1  or  N2. 

 

a 
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N1={a,b,c,d} 
 
N2={x,y,z} 

N1=movies         N2=actors 



Graph Types- Digraphs 
• Digraphs or Directed Graphs 
▫  Edges are directed 

• Adjacency: 
▫  There is a direct edge btw nodes! 
�  i є N 
�  j є N 
�   (i, j) є E 

i j 
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Graph Types- Digraphs- Cnt. 
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• Node Indegree and Outdegree 
▫  Indegree 
�  The indegree of a node, dI(i), is the number of nodes 

that link to i, 
▫  Outdegree 
�  The outdegree of a node, dO(i), is the number of nodes 

that are linked by i, 
 
•  Indegree: number of edges terminating at i. 
• Outdegree: number of edges originating at i. 



Graph Types- Digraphs- Cnt. 

A != AT 

0 1 0 0 1 0 
0 0 1 0 0 1 
0 1 0 0 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 
0 1 0 0 0 0 

A = 

2 
2 
1 
1 
1 
1 

0 3 1 0 2 2 
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n 

dO (ni ) = ∑   
Aij 

j =1 

n 

d I (n j ) = ∑   
Aij 

i=1 



Graph Types- Digraphs- Cnt. 
• Density of Digraph: 
▫  Number of all  possible edges in Digraph? 
�   N * (N-1) 

𝑬 
𝑵  ∗  (𝑵 −  𝟏) 

32 



Graph Types- Digraphs- Cnt. 
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• Connectivity 
▫  Walks 
▫  Trails 
▫  Paths 

 
•  The same as before just links are directed! 



Graph Types- Multigraphs 

34 

• A Multigraph (or multivariate graph) G consists of: 
▫  a set of nodes, and 
▫  two or more sets of edges, E+ = {E1, E2, …, Er}, r is 

the number of edge sets. 



Multigraph 1. 

35 Source: the geography of transport systems http://www.people.hofstra.edu/geotrans/ 



Multigraph 2. 
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Graph Types- Multigraphs- Cnt. 
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• Number of edges btw any two nodes in a  
multigraph? 
▫  E+ = {E1, E2, …, Er}, r is the number of sets of edges 
�  Undirected multigraph 

�   [0, r] 
�  Directed multigraph 

�   [0, 2*r] 



Graph Types- Hypergraphs 

38 

• A hypergraph is a graph in which an edge can  
connect any number of nodes. 

•  In a hypergraph, E is a set of non-empty subsets of 
N called hyperedges. 



Graph Types- Hypergraphs- Cnt. 
• A hypergraph is a graph in which an edge can  

connect any number of nodes. 
•  In a hypergraph, E is a set of non-empty subsets of 

N called hyperedges. 

N={v1, v2, v3, v4, v5, v6, v7} 
 
E={e1, e2, e3, e4}= 
 
{{v1, v2, v3}, {v2, v3}, {v3, v5, v6}, {v4}} 
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Graph Types- Hypergraphs- Cnt. 
• Applications:  

• Recom. systems (communities as edges), 
•  Image retrieval (correlations as edges), 
• Bioinformatics (interactions or semantic 

types as edges). 

N={v1, v2, v3, v4, v5, v6, v7} 
 
E={e1, e2, e3, e4}= 
 
{{v1, v2, v3}, {v2, v3}, {v3, v5, v6}, {v4}} 
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Weighted/Signed Graphs 

41 

• Edges may carry additional information 
▫  Tie strength à   how good are two nodes as friends? 
▫  Distance à   how long is the distance btw two cities? 
▫  Delay à   how long does the transmission take btw 

two cities? 
▫  Signs à   two nodes are friends or enemies? 



Reading 

42 

• Ch. 22 Elementary Graph Algorithms [CLRS] 
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Lecture Topics 
• Connected Components 
• Breadth-First Search 
• Depth-First Search 
•  Shortest Path Algorithm 
▫  Dijkstra’s algorithm 

2 



Connected Components 
• Connected component of a graph is a subset of  

nodes such that: 
▫  every node in the subset has a path to every other;  

and 
▫  the subset is not part of a bigger component. 

3 



Connected Components 
• Connected component of a graph is a subset of  

nodes such that: 
▫  every node in the subset has a path to every other;  

and 
▫  the subset is not part of a bigger component. 

4 



Connected Components- Cnt. 
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Connected Components- Cnt. 
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Breadth & Depth-First Search 
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• General techniques for traversing graphs! 
▫  Start from a given node s (i.e. start node) and visit all  

nodes and edges in the graph. 
• Compute the connected components of graph! 
▫  Use components to determine whether graph is  

connected! 
�  How? 
▫  Use components to determine if there is a path btw  

node pairs! 
�  How? 



Breadth-First Search 
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•  Start with s 
• Visit all neighbors of s 
▫  these are called level-1 nodes 

• Visit all neighbors of level-1 nodes 
▫  these are called level-2 nodes 

• Repeat until all nodes are visited. 
▫  Each Node is only visited once. 

 
• Key Point: 
▫  All level-k nodes should be visited before any level- 

(k+1) node! 



Example 1. BFS 
• Graph G: 

•  Its BFS traversal: 

s 



Example 1. BFS –Cnt. 
• BFS traversal: 
▫  Distance to root at  

level-i? 
▫  Components? 
�  Connectivity? 
�  Paths? 
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Depth-First Search 

11 

•  Starts from s 
• Explores as far as possible along each branch before  

backtracking. 
�  Visit a neighbor of s [say v1] 
�  Visit a neighbor of v1 [say v2] 
�  Repeat until all nodes are visited. 



Shortest Path Algorithms 
• Given a weighted directed graph and two nodes s 

and t, find the shortest path from s to t. 
▫  Cost of path = sum of edge weights in path 

12 



Shortest Path Algorithms- Cnt. 
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• Dijkstra’s algorithm 
•  The Bellman-Ford algorithm 
•  The Floyd-Warshall algorithm 
•  Johnson's algorithm 
• Etc. 



Shortest Path Algorithms- Cnt. 

•  Shortest path from s to t? 

s 

3 

t 

2 

6 

7 

4 
5 

23 

18 

2 

9 

14 

15 5 

30 

20 

44 

16 

11 

6 

19 

14 
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Shortest Path Algorithms- Cnt. 

•  Shortest Path= s-2-3-5-t 
• Cost of path =  9 + 23 + 2 + 16 = 48. 

s 

3 

t 

2 

6 

7 

4 
5 

23 

18 
2 

9 

14 

15 5 

30 

20 

44 

16 

11 

6 

19 

6 
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Shortest Path Algorithms- Cnt. 
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• Applications 
▫  Small World Phenomenon 
▫  Internet packet routing 
▫  Flight reservations 
▫  Driving directions 
▫  … 



Dijkstra algorithm 
• Weighted Directed graph G = (N, E), 
▫  s: source node 
▫  t: target node 
▫  l(u,v): weight of the edge btw nodes u and v 
▫  d(u): shortest path distance from s to u. 
�  sum of edge weights in path 

• We aim to compute d(t)! 

s t 

v d(u) 
u 

λu,v 

17 

d(t) 



Dijkstra algorithm- Cnt. 

t s  
d(s)=0 

∞

18 

∞

∞

∞

∞

•  Initialization? 
▫  d(s) = 0 
▫  d(u)= ∞ for all other nodes 

 
∞

∞

∞



Dijkstra algorithm- Cnt. 
•  To find the shortest path from s to t: 
▫  Maintain a set of explored nodes S for which we  

have determined the shortest path distance from s to  
any u є S. 
▫  Repeatedly expand S. 

s t 

v d(u) 
u 

S 

19 

λu,v 



Dijkstra algorithm- Cnt. 
• Repeatedly expand S? 
▫  Repeatedly update d(.) for the unexplored 

nodes: 

s t 

v d(u) 
u 

S 

20 

λu,v 

if d(v) > d(u) + l (u, v) 
then d(v) ←  d(u) + l(u,v) 

▫  add v with smallest d(v) to S. 



Dijkstra algorithm- Cnt. 
• d(s) ←  0 
•  for each v ∈  N – {s} 
▫ do d(v) ←  ∞

• S  ← ∅
• Q ←  N ⊳ Q is a set maintaining N – S 
• while Q ≠  ∅
▫ do u ← EXTRACT-MIN(Q) 
�   S ← S  ∪  {u} 
�  for each v ∈  Adj(u) 
� do if d(v) > d(u) + l(u,v) 
▫  then d(v) ←  d(u) + l(u,v) 

Set of explored nodes 

Set of unexplored nodes 

Update d(.) for all  
neighbors of u: this is  
called relaxation! 

Returns node u ∈  Q that 
has minimum d(u) 

Add it to explored nodes 

21 



Example 1. 
• d(s) ←  0 
•  for each v ∈  N – {s} 
▫ do d(v) ←  ∞

• S ←  ∅
• Q ←  N 
• while Q ≠  ∅
▫ do u ←  EXTRACT-MIN(Q) 
�   S ←  S ∪  {u} 
�  for each v ∈  Adj(u) 
� do if d(v) > d(u) + l(u, v) 
▫  then d(v) ←  d(u) + l(u,v) 

s 

b d 

c e 

10 

3 
1 4 7 9 8 

2 

2 
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Example 1. 
• d(s) ←  0 
•  for each v ∈  N – {s} 
▫ do d(v) ←  ∞

• S ←  ∅
• Q ←  N 
• while Q ≠  ∅
▫ do u ←  EXTRACT-MIN(Q) 
�   S ←  S ∪  {u} 
�  for each v ∈  Adj(u) 
� do if d(v) > d(u) + l(u, v) 
▫  then d(v) ←  d(u) + l(u, v) 

s 

10 

3 
1 4 7 9 8 

2 

2 

0 

c 

∞

e 

∞

∞

d 

∞

b 

S={} 

Q={s, b, c, d, e} 
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Example 1. 
• d(s) ←  0 
•  for each v ∈  N – {s} 
▫ do d(v) ←  ∞

• S ←  ∅
• Q ←  N 
• while Q ≠  ∅
▫ do u ←  EXTRACT-MIN(Q) 
�   S ←  S ∪  {u} 
�  for each v ∈  Adj(u) 
� do if d(v) > d(u) + l(u, v) 
▫  then d(v) ←  d(u) + l(u, v) 

10 
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1 4 7 9 8 

2 

2 
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c 

∞

e 

∞

∞

d 

∞

b 

S={} 

Q={b, c, d, e} 

s 

ss 
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Example 1. 
• d(s) ←  0 
•  for each v ∈  N – {s} 
▫ do d(v) ←  ∞

• S ←  ∅
• Q ←  N 
• while Q ≠  ∅
▫ do u ←  EXTRACT-MIN(Q) 
�   S ←  S ∪  {u} 
�  for each v ∈  Adj(u) 
� do if d(v) > d(u) + l(u, v) 
▫  then d(v) ←  d(u) + l(u, v) 

s 

10 

3 
1 4 7 9 8 

2 

2 

0 

c 

∞
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∞

∞

d 

∞

b 

S={s} 

Q={b, c, d, e} 
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Example 1. 
• d(s) ←  0 
•  for each v ∈  N – {s} 
▫ do d(v) ←  ∞

• S ←  ∅
• Q ←  N 
• while Q ≠  ∅
▫ do u ←  EXTRACT-MIN(Q) 
�   S ←  S ∪  {u} 
�  for each v ∈  Adj(u) 
� do if d(v) > d(u) + l(u, v) 
▫  then d(v) ←  d(u) + l(u, v) 

s 

10 

3 
1 4 7 9 8 

2 

2 

0 

e 

∞

∞

d 

S={s} 

Q={b, c, d, e} 

10 ∞

b 
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Example 1. 
• d(s) ←  0 
•  for each v ∈  N – {s} 
▫ do d(v) ←  ∞

• S ←  ∅
• Q ←  N 
• while Q ≠  ∅
▫ do u ←  EXTRACT-MIN(Q) 
�   S ←  S ∪  {u} 
�  for each v ∈  Adj(u) 
� do if d(v) > d(u) + l(u, v) 
▫  then d(v) ←  d(u) + l(u, v) 

s 

10 

3 
1 4 7 9 8 

2 

2 

0 
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∞

∞
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S={s} 

Q={b, d, e} 

10 ∞
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c 

cc 
3 ∞
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Example 1. 
• d(s) ←  0 
•  for each v ∈  N – {s} 
▫ do d(v) ←  ∞

• S ←  ∅
• Q ←  N 
• while Q ≠  ∅
▫ do u ←  EXTRACT-MIN(Q) 
�   S ←  S ∪  {u} 
�  for each v ∈  Adj(u) 
� do if d(v) > d(u) + l(u, v) 
▫  then d(v) ←  d(u) + l(u, v) 
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Example 1. 
• d(s) ←  0 
•  for each v ∈  N – {s} 
▫ do d(v) ←  ∞

• S ←  ∅
• Q ←  N 
• while Q ≠  ∅
▫ do u ←  EXTRACT-MIN(Q) 
�   S ←  S ∪  {u} 
�  for each v ∈  Adj(u) 
� do if d(v) > d(u) + l(u, v) 
▫  then d(v) ←  d(u) + l(u, v) 
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Example 1. 
• d(s) ←  0 
•  for each v ∈  N – {s} 
▫ do d(v) ←  ∞

• S ←  ∅
• Q ←  N 
• while Q ≠  ∅
▫ do u ←  EXTRACT-MIN(Q) 
�   S ←  S ∪  {u} 
�  for each v ∈  Adj(u) 
� do if d(v) > d(u) + l(u, v) 
▫  then d(v) ←  d(u) + l(u, v) 
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Example 1. 
• d(s) ←  0 
•  for each v ∈  N – {s} 
▫ do d(v) ←  ∞

• S ←  ∅
• Q ←  N 
• while Q ≠  ∅
▫ do u ←  EXTRACT-MIN(Q) 
�   S ←  S ∪  {u} 
�  for each v ∈  Adj(u) 
� do if d(v) > d(u) + l(u, v) 
▫  then d(v) ←  d(u) + l(u, v) 
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Example 1. 
• d(s) ←  0 
•  for each v ∈  N – {s} 
▫ do d(v) ←  ∞

• S ←  ∅
• Q ←  N 
• while Q ≠  ∅
▫ do u ←  EXTRACT-MIN(Q) 
�   S ←  S ∪  {u} 
�  for each v ∈  Adj(u) 
� do if d(v) > d(u) + l(u, v) 
▫  then d(v) ←  d(u) + l(u, v) 
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Example 1. 
• d(s) ←  0 
•  for each v ∈  N – {s} 
▫ do d(v) ←  ∞

• S ←  ∅
• Q ←  N 
• while Q ≠  ∅
▫ do u ←  EXTRACT-MIN(Q) 
�   S ←  S ∪  {u} 
�  for each v ∈  Adj(u) 
� do if d(v) > d(u) + l(u, v) 
▫  then d(v) ←  d(u) + l(u, v) 
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Example 1. 
• d(s) ←  0 
•  for each v ∈  N – {s} 
▫ do d(v) ←  ∞

• S ←  ∅
• Q ←  N 
• while Q ≠  ∅
▫ do u ←  EXTRACT-MIN(Q) 
�   S ←  S ∪  {u} 
�  for each v ∈  Adj(u) 
� do if d(v) > d(u) + l(u, v) 
▫  then d(v) ←  d(u) + l(u, v) 
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Example 1. 
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Example 1. 
• d(s) ←  0 
•  for each v ∈  N – {s} 
▫ do d(v) ←  ∞

• S ←  ∅
• Q ←  N 
• while Q ≠  ∅
▫ do u ←  EXTRACT-MIN(Q) 
�   S ←  S ∪  {u} 
�  for each v ∈  Adj(u) 
� do if d(v) > d(u) + l(u, v) 
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Example 1. 
• d(s) ←  0 
•  for each v ∈  N – {s} 
▫ do d(v) ←  ∞

• S ←  ∅
• Q ←  N 
• while Q ≠  ∅
▫ do u ←  EXTRACT-MIN(Q) 
�   S ←  S ∪  {u} 
�  for each v ∈  Adj(u) 
� do if d(v) > d(u) + l(u, v) 
▫  then d(v) ←  d(u) + l(u, v) 
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Example 1. 
• d(s) ←  0 
•  for each v ∈  N – {s} 
▫ do d(v) ←  ∞

• S ←  ∅
• Q ←  N 
• while Q ≠  ∅
▫ do u ←  EXTRACT-MIN(Q) 
�   S ←  S ∪  {u} 
�  for each v ∈  Adj(u) 
� do if d(v) > d(u) + l(u, v) 
▫  then d(v) ←  d(u) + l(u, v) 
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Example 1. 
• d(s) ←  0 
•  for each v ∈  N – {s} 
▫ do d(v) ←  ∞

• S ←  ∅
• Q ←  N 
• while Q ≠  ∅
▫ do u ←  EXTRACT-MIN(Q) 
�   S ←  S ∪  {u} 
�  for each v ∈  Adj(u) 
� do if d(v) > d(u) + l(u, v) 
▫  then d(v) ←  d(u) + l(u, v) 
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Dijkstra’s algorithm- Cnt. 

40 

• Dijkstra’s algorithm computes the shortest  
distances btw a start node and all other nodes 
in the graph  (not only a target node)! 

• Assumptions: 
▫  the graph is connected, and 
▫  the weights are nonnegative 



Dijkstra’s algorithm- Analysis 
• d(s) ←  0 
•  for each v ∈  N – {s} 
▫ do d(v) ←  ∞

• S ←  ∅
• Q ←  N 
• while Q ≠  ∅
▫ do u ←  EXTRACT-MIN(Q) 
�   S ←  S ∪  {u} 
�  for each v ∈  Adj(u) 
� do if d(v) > d(u) + l(u, v) 
▫  then d(v) ←  d(u) + l(u, v) 

|N | 
times 

41 

   degree (u) 
times 

Time = Θ  (N·TEXTRACT-MIN + E·TRelaxation) , Handshaking  Lemma! 



Dijkstra’s algorithm- Analysis- Cnt. 

Time = Θ  (N·TEXTRACT-MIN + E·TRelaxation) 

Q Total 

Array 

TEXTRACT-MIN  TDECREASE-KEY 

O(N)  O(1) O(N2) 
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Reading 
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• Ch.24 Single Source Shortest Paths [CLRS] 
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Lecture Topics 

2 

•  Triadic closure and Bridges  
• Neighborhood overlap 
•  The Strength of Weak Ties 
•  Structural Holes 
• Node Centrality  
• Edge Centrality  
• Homophily  
•  Snapshot Algorithm 
• Network Segregation 



Triadic Closure 
•  If two nodes in a network have a neighbor in  

common, then there is an increased likelihood they  
will become connected themselves. 
▫  Reasons for Triadic Closure: 
�  Opportunity, Trust, Incentives 

• Clustering Coefficient 
▫  A measure to capture the prevalence  

of Triadic Closure 
▫  Defined for nodes 

Number of connections btw A’s friends 

Possible Number of connections btw A’s friends 
CF(A) = = 1/6 

3 



Bridge 
• An edge is bridge if deleting it would put its two  

ends into two different connected components. 
▫  Bridges provide access to parts of the network that 

are unreachable by other means! 

4 



Local Bridge 
• An edge such that its endpoints have no friends in  

common! à   edge not in a triangle! 
▫  deleting a local bridge increases the distance btw its 

endpoints to a value strictly > 2. 

5 



The Strength of Weak Ties 

6 

• Weak ties (acquaintances) connect us to new  
sources of information. 
▫  This dual role - as weak connections but also valuable  

links to hard-to-reach parts of the network - is the  
surprising strength of weak ties. 



Neighborhood Overlap 
• A measure to capture bridgeness of an edge! 

Don’t count A and B here! 

Nodes 
-------  
A-E 

A-F 

A-B 

7 

Neighborhood overlap 
-------------------- 
2/4 

1/6 

0/8 (Overlap = 0 for  
local bridges) 

Edges with very small neighborhood overlap can 
be considered as “almost” local bridges 



Questions 
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1.  Relation btw neighborhood overlap of an 
edge and its tie strength? 



Questions 

9 

1.  Relation btw neighborhood overlap of an 
edge and its tie strength? 
�  Neighborhood overlap should grow as tie strength 

Grows. 



Questions 
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2.  How weak ties serve to link different communities 
that each contain large number of stronger ties? 



Questions 
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2.  How weak ties serve to link different communities 
that each contain large number of stronger ties? 
�  Delete edges from the network one at a time, start 

with the weakest ties first! 
�  The giant component shrinks rapidly. 



Structural Holes 
Structural hole: the “empty space” in the net  
btw 2 sets of nodes that don’t interact closely! 
 
A node with multiple local  
bridges spans a structural  
hole in the net. 

12 

B has early access to info! 
 
B is a gatekeeper and controls the  
ways in which groups learn about  
info. She has power! 
 
B may try to prevent triangles  
from forming around the local  
bridges she is part of! 

How long these local bridges last  
before triadic closure produces  
short-cuts around them? 



Node Centrality 

13 

• Degree centrality 
▫  A node is central if it has ties to many other nodes 
 

• Closeness centrality 
▫  A node is central if it is “close” to other nodes 
 

• Betweenness centrality 
▫  A node is central if other nodes have to go through it  

to get to each other 



Edge Centrality 

14 

• Betweenness: 
�  Let’s assume 1 unit of “flow” will pass over all shortest 

path btw any pair of nodes A and B. 
�  Betweenness of an edge is the total amount of flow it  

carries! 
�  If there are k shortest path btw A and B, then 1/k units 

of flow will go along each shortest path! 
• Girvan-Newman Algorithm: 
▫  Repeat until no edges are left: 
�  Calculate betweenness of edges 
�  Remove edges with highest betweenness 



Homophily 
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•  Links connect people with similar characteristics. 
• Homophily has two mechanisms for link formation: 
▫  Selection: 
�  Selecting friends with similar characteristics 

�  Individual characteristics drive the formation of links 
�  Immutable characteristics 

▫  Social Influence (socialization) 
�  Modify behaviors to make them close to behaviors of 

friends 
�  Existing links influence the individual characteristics of the  

nodes 
�  Mutable characteristics 



Homophily- Cnt. 
• Focal Closure: 

B and C people, A focus 
 
• Selection: B links to 

similar C (common 
focus) 

16 



Homophily- Cnt. 
• Membership Closure: 

A and B people, C focus 
 
• Social Influence: B 

links to C influenced by A 

17 



Snapshot Algorithm 

1)  Take 2 snapshots of network at different times: 
S(1), S(2). 

 
2)  For each k, find all pairs of nodes in S(1) that are not 

directly connected but have k common friends. 
 
3)  Compute T(k) as the fraction of these pairs connected 

in S(2). 

4)  Plot T(k) as a function of k T(0) is the rate of link formation when  
it does not close a triangle 

estimate for the probability that a link will form  
btw 2 people with k common friends. 

Tracking link formation in large scale  datasets based on the above mechanisms 
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Spatial Model of Segregation 

Color the  map wrt to a given race : 

--Lighter: Lowest percentage of the race 
--Darker: highest percentage of  the race. 

19 

Effects of homophily 
in the formation of ethnically  

and racially homogeneous 

neighborhoods in cities. 
 
People live near others like them!! 

Schelling model 
Local preferences of 
individuals can produce 
unintended global  
patterns. 



Questions? 
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(Optional) Reading 
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• Ch.02 Graphs [NCM] 
• Ch.03 Strong and Weak Ties [NCM] 


