Network Basics 1

Graph ML

Department of Computer Science University of Massachusetts, Lowell

Hadi Amiri <u>hadi@cs.uml.edu</u>

Lecture Topics

- Graph Theory
 - Node degree
 - Graph density
 - Complete Graph
 - Distance and Diameter
 - Adjacency matrix
 - Graph Connectivity
 - Reachability
 - Sub-graphs
 - Graph Types

Graph Theory

- A graph consists of
 - N: a set of nodes (items, entities, people, etc), and
 - **E**: a set of links or edges between nodes
- Graph is a way to specify relationships / links amongst a set of nodes.
- We define
 - $N = |N| \rightarrow \text{size of } N$
 - $E = |E| \rightarrow \text{size of } E$

Graph Theory. Cnt.

- Nodes *i* and *j* are *adjacent* or *neighbors* if:
 - There is an edge btw them!
 - *i* ∈ **N**
 - *j* є **N**
 - (*i*, *j*) \in **E**

Sample Graphs 1.

Node Degree *d*(*i*)

- Given Node *i*, its degree d(i) is:
 - the number nodes adjacent to it.

	Actor	Lives near:	Degree
n1	Allison	Ross, Sarah	2
n2	Drew	Eliot	1
n3	Eliot	Drew	1
n4	Keith	Ross, Sarah	2
n5	Ross	Allison, Keith, Sarah	3
n_6	Sarah	Allison, Keith, Ross	3

$$l_1 = (n_1, n_5)$$

$$l_2 = (n_1, n_6)$$

$$l_3 = (n_2, n_3)$$

$$l_4 = (n_4, n_5)$$

$$l_5 = (n_4, n_6)$$

$$l_6 = (n_5, n_6)$$

Graph Density

• How many edges are possible?

Graph Density- Cnt.

• (N-1) + (N-2) + (N-3) + ... + 1 = N * (N-1) / 2

Graph Density- Cnt.

- Graph Density of a given graph G is determined by:
 - the proportion of all possible edges that are present in the graph.
 - with N nodes and E edges, graph density is:

Density = 2 * E / N * (N-1)

Complete Graph

• If all edges are present, then all nodes are adjacent (neighbors), and the graph is a *Complete Graph*.

What is the density of a complete graph?

Distance and Diameter

- Distance btw node *i* and *j*: *d*(*i*,*j*)
 length of the *shortest path* between *i* and *j*
- Diameter of a graph
 - the maximum value of d(i,j) for all *i* and *j*

The path with min number of edges.

Diameter of graph = max d(i, j) = d(1, 5) = 3

What is the distance and diameter of a complete graph?

Adjacency Matrix

• Each row or column represents a node!

A = A^T Properties of adjacency matrix \rightarrow next session

Graph Connectivity

- Indirect connections between nodes:
 - Walks
 - Trails
 - Paths

• Walk

 A sequence of nodes and edges that starts and ends with nodes where each node is incident to the edges following and preceding it.

• Trail

- A trail is a walk with distinct edges
- Path
 - A path is a walk with distinct nodes & edges.
- The length of a walk, trail, or path is the number of edges in it.

• Walk

 A sequence of nodes and edges that starts and ends with nodes where each node is incident to the edges following and preceding it.

• Walk

 A sequence of nodes and edges that starts and ends with nodes where each node is incident to the edges following and preceding it.

Sample Walk: $W=n_1l_2n_4l_3n_2l_3n_4$

• Trail

 A trail is a walk in which all edges are distinct, although some node(s) may be included more than once.

• Trail

 A trail is a walk in which all edges are distinct, although some node(s) may be included more than once.

• Path

 A path is a walk in which all nodes and all edges are distinct.

• Path

 A path is a walk in which all nodes and all edges are distinct.

Is this a Walk? Trail? Path?
We call a *closed path* is a Cycle!

Reachability

• If there is a **path between nodes** *i* and *j*, then *i* and *j* are reachable from each other.

Connected Graph

- A graph is connected if *every pair of its nodes* are reachable from each other
 - i.e. there is a path between them.

Disconnected Graph

How can we make this graph connected?

Connected Graph

and this graph disconnected?

Sub-graphs

• Graph G_s is a sub-graph of G if its nodes and edges are a subset of G's nodes and edges respectively.

Sub-graphs- Cnt.

- UMASS
- Graph G_s is a sub-graph of G if its nodes and edges are a subset nodes and edges of G respectively.

Graph Types

- Several types of graphs:
 - Bipartite graphs
 - Digraphs
 - Multigraphs
 - Hypergraphs
 - Weighted/Signed

Graph Types- Bipartite Graphs

- A bipartite graph is an undirected graph in which
 - nodes can be partitioned into two (disjoint) sets N₁ and N₂ such that:
 - $(u, v) \in E$ implies either $u \in N_1$ and $v \in N_2$ or vice versa
 - So, all edges go between the two sets N_1 and N_2 but not within N_1 or N_2 .

Graph Types- Digraphs

- Digraphs or Directed Graphs
 - Edges are directed
- Adjacency:
 - There is a direct edge btw nodes!
 - *i* є N
 - $\cdot j \in \mathbb{N}$
 - (*i*, *j*) \in E

- Node Indegree and Outdegree
 - Indegree
 - The indegree of a node, d_I(*i*), is the number of nodes that link to *i*,
 - Outdegree
 - The outdegree of a node, d_o(*i*), is the number of nodes that are linked by *i*,
- Indegree: number of edges terminating at *i*.
- Outdegree: number of edges originating at *i*.

 $A != A^{T}$

- Density of Digraph:
 - Number of all possible edges in Digraph?
 - N * (N-1)

$$\frac{E}{N * (N-1)}$$

- Connectivity
 - Walks
 - Trails
 - Paths
- The same as before just links are directed!

Graph Types- Multigraphs

- A Multigraph (or multivariate graph) *G* consists of:
 a set of nodes, *and*
 - two or more sets of edges, E⁺ = {E₁, E₂, ..., E_r}, r is the number of edge sets.

Multigraph 1.

Multigraph 2.

Graph Types- Multigraphs- Cnt.

- Number of edges btw any two nodes in a multigraph?
 - $E^+ = \{E_1, E_2, ..., E_r\}, r$ is the number of sets of edges
 - Undirected multigraph
 - [0, r]
 - Directed multigraph
 - [0, 2*r]

Graph Types- Hypergraphs

- A hypergraph is a graph in which an edge can connect any number of nodes.
- In a hypergraph, *E* is a set of non-empty subsets of *N* called *hyperedges*.

Graph Types- Hypergraphs- Cnt.

- A hypergraph is a graph in which an edge can connect any number of nodes.
- In a hypergraph, *E* is a set of non-empty subsets of *N* called *hyperedges*.

 $\mathbf{N}{=}\{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$

 $\mathbf{E} = \{e_1, e_2, e_3, e_4\} =$

 $\{\{v_1, v_2, v_3\}, \{v_2, v_3\}, \{v_3, v_5, v_6\}, \{v_4\}\}$

Graph Types- Hypergraphs- Cnt.

- Applications:
 - Recom. systems (communities as edges),
 - Image retrieval (correlations as edges),
 - Bioinformatics (interactions or semantic types as edges).

 $\mathbf{N}{=}\{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$

 $\mathbf{E} = \{e_1, e_2, e_3, e_4\} =$

 $\{\{v_1, v_2, v_3\}, \{v_2, v_3\}, \{v_3, v_5, v_6\}, \{v_4\}\}$

Weighted/Signed Graphs

- Edges may carry additional information
 - Tie strength \rightarrow how good are two nodes as friends?
 - Distance \rightarrow how long is the distance btw two cities?
 - Delay → how long does the transmission take btw two cities?
 - Signs \rightarrow two nodes are friends or enemies?

• Ch. 22 Elementary Graph Algorithms [CLRS]

Network Basics 2

Graph ML

Department of Computer Science University of Massachusetts, Lowell

Hadi Amiri <u>hadi@cs.uml.edu</u>

Lecture Topics

- Connected Components
- Breadth-First Search
- Depth-First Search
- Shortest Path Algorithm
 - Dijkstra's algorithm

Connected Components

- Connected component of a graph is a subset of nodes such that:
 - every node in the subset has a path to every other; and
 - the subset is not part of a bigger component.

Connected Components

- Connected component of a graph is a subset of nodes such that:
 - every node in the subset has a path to every other; and
 - the subset is not part of a bigger component.

Figure 2.5: A graph with three connected components.

Connected Components- Cnt.

Connected Components- Cnt.

Figure 2.7: A network in which the nodes are students in a large American high school, and an edge joins two who had a romantic relationship at some point during the 18-month period in which the study was conducted [49].

Breadth & Depth-First Search

- General techniques for traversing graphs!
 - Start from a given node s (i.e. start node) and visit all nodes and edges in the graph.
- Compute the connected components of graph!
 - Use components to determine whether graph is connected!
 - How?
 - Use components to determine if there is a path btw node pairs!
 - How?

Breadth-First Search

- Start with *s*
- Visit all neighbors of *s*
 - these are called level-1 nodes
- Visit all neighbors of level-1 nodes
 these are called level-2 nodes
- Repeat until all nodes are visited.
 - Each Node is only visited once.
- Key Point:
 - All level-k nodes should be visited before any level-(k+1) node!

Example 1. BFS -Cnt.

- BFS traversal:
 - Distance to root at level-*i*?
 - Components?
 - Connectivity?
 - Paths?

Depth-First Search

- Starts from s
- Explores as far as possible along each branch before backtracking.
 - Visit a neighbor of *s* [say v₁]
 - Visit a neighbor of v_1 [say v_2]
 - Repeat until all nodes are visited.

Shortest Path Algorithms

- Given a weighted directed graph and two nodes *s* and *t*, find the shortest path from *s* to *t*.
 - Cost of path = sum of edge weights in path

- Dijkstra's algorithm
- The Bellman-Ford algorithm
- The Floyd-Warshall algorithm
- Johnson's algorithm
- Etc.

• Shortest path from *s* to *t*?

- Shortest Path= s-2-3-5-t
- Cost of path = 9 + 23 + 2 + 16 = 48.

Applications

- Small World Phenomenon
- Internet packet routing
- Flight reservations
- Driving directions

Dijkstra algorithm

- Weighted Directed graph G = (N, E),
 - *s*: source node
 - *t*: target node
 - $l_{(u,v)}$: weight of the edge btw nodes u and v
 - d(u): shortest path distance from s to u.
 - sum of edge weights in path
- We aim to compute d(*t*)!

- Initialization?
 - $\ \ \, \mathbf{d}(\mathbf{s}) = \mathbf{0}$
 - □ $d(u) = \infty$ for all other nodes

- To find the shortest path from *s* to *t*:
 - Maintain a set of <u>explored nodes</u> S for which we have determined the shortest path distance from s to any u ∈ S.
 - Repeatedly expand S.

- Repeatedly expand S?
 - Repeatedly update d(.) for the unexplored nodes:
 if $d(v) > d(u) + l_{(u,v)}$ then $d(v) \leftarrow d(u) + l_{(u,v)}$
 - add v with smallest d(v) to **S**.

• $d(s) \leftarrow 0$

• $S \leftarrow \emptyset$

• for each $v \in N - \{s\}$ • do $d(v) \leftarrow \infty$

—Set of unexplored nodes

Set of explored nodes

- $Q \leftarrow N \models Q$ is a set maintaining N S
- while **Q**≠∅
 - $\Box \, \mathbf{do} \, u \leftarrow \, \mathrm{Extract-Min}(\mathbf{Q}) \leftarrow \, \mathbf{Q}$
 - $\mathbf{S} \leftarrow \mathbf{S} \cup \{u\} \leftarrow \mathbf{S}$
 - for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u,v)}$
 - then $d(v) \leftarrow d(u) + l_{(u,v)}$

Returns node $u \in Q$ that has minimum d(u)

- Add it to explored nodes
 - Update d(.) for all neighbors of u: this is called **relaxation**!

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$ • do $d(v) \leftarrow \infty$
- •S ← Ø
- $Q \leftarrow N$
- while **Q**≠∅
 - **do** $u \leftarrow \text{Extract-Min}(\mathbf{Q})$
 - $S \leftarrow S \cup \{u\}$
 - for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u, v)}$
 - then $d(v) \leftarrow d(u) + l_{(u,v)}$

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$ • do $d(v) \leftarrow \infty$
- S ← Ø
- $Q \leftarrow N$
- while **Q**≠∅
 - $\Box \ \mathbf{do} \ u \leftarrow EXTRACT-MIN(\mathbf{Q})$
 - $S \leftarrow S \cup \{u\}$
 - for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u,v)}$
 - then $d(v) \leftarrow d(u) + l_{(u, v)}$

 ∞

S={}

 $\mathbf{Q}{=}\{s,b,c,d,e\}$

 ∞

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$ • do $d(v) \leftarrow \infty$
- •S ← Ø
- $Q \leftarrow N$
- while **Q**≠∅
 - **do** $u \leftarrow \text{Extract-Min}(\mathbf{Q})$
 - $S \leftarrow S \cup \{u\}$
 - for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u,v)}$
 - then $d(v) \leftarrow d(u) + l_{(u, v)}$

S={} s

 $\mathbf{Q}{=}\{\mathrm{b},\mathrm{c},\mathrm{d},\mathrm{e}\}$

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$ • do $d(v) \leftarrow \infty$
- •S ← Ø
- $Q \leftarrow N$
- while **Q**≠∅
 - $\Box \, \mathbf{do} \, u \leftarrow \quad \text{Extract-Min}(\mathbf{Q})$
 - $S \leftarrow S \cup \{u\}$
 - for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u,v)}$
 - then $d(v) \leftarrow d(u) + l_{(u,v)}$

 ∞

 ∞

 $\mathbf{Q}{=}\{\mathrm{b},\mathrm{c},\mathrm{d},\mathrm{e}\}$

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$ • do $d(v) \leftarrow \infty$
- •S ← Ø
- $Q \leftarrow N$
- while **Q** ≠ ∅
 - $\Box \, \mathbf{do} \, u \leftarrow \quad \text{Extract-Min}(\mathbf{Q})$
 - $S \leftarrow S \cup \{u\}$
 - for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u,v)}$
 - then $d(v) \leftarrow d(u) + l_{(u, v)}$

S={s}

 $\mathbf{Q}{=}\{\mathrm{b},\mathrm{c},\mathrm{d},\mathrm{e}\}$

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$ • do $d(v) \leftarrow \infty$
- •S ← Ø
- $Q \leftarrow N$
- while **Q**≠∅
- do $u \leftarrow \text{Extract-Min}(\mathbf{Q})$
 - $S \leftarrow S \cup \{u\}$
 - for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u,v)}$
 - then $d(v) \leftarrow d(u) + l_{(u, v)}$

 \mathbf{Q} ={b, d, e}

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$ • do $d(v) \leftarrow \infty$
- •S ← Ø
- $Q \leftarrow N$
- while **Q**≠∅
 - $\Box \, \mathbf{do} \, u \leftarrow \quad \text{Extract-Min}(\mathbf{Q})$
 - $S \leftarrow S \cup \{u\}$
 - for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u,v)}$
 - then $d(v) \leftarrow d(u) + l_{(u, v)}$

 $S = \{s, c\}$

 $\mathbf{Q}{=}\{\mathrm{b},\mathrm{d},\mathrm{e}\}$

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$ • do $d(v) \leftarrow \infty$
- S ← Ø
- $Q \leftarrow N$
- while **Q**≠∅
 - $\Box \, \mathbf{do} \, u \leftarrow \quad \text{Extract-Min}(\mathbf{Q})$
 - $S \leftarrow S \cup \{u\}$
 - for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u,v)}$
 - then $d(v) \leftarrow d(u) + l_{(u, v)}$

7

<u>10</u> ∞

0

 $\mathbf{S}=\{s,c\}$

 $\mathbf{Q}{=}\{\mathrm{b},\mathrm{d},\mathrm{e}\}$

∞ 11

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$ • do $d(v) \leftarrow \infty$
- S ← Ø
- $Q \leftarrow N$
- while **Q**≠∅
 - **do** $u \leftarrow \text{Extract-Min}(\mathbf{Q})$
 - $S \leftarrow S \cup \{u\}$
 - for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u,v)}$
 - then $d(v) \leftarrow d(u) + l_{(u, v)}$

 $\mathbf{S} = \{s, c\}$

e

 $\mathbf{Q} = \{b, d\}$

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$ • do $d(v) \leftarrow \infty$
- S ← Ø
- $Q \leftarrow N$
- while **Q**≠∅
 - $\Box \, \mathbf{do} \, u \leftarrow \quad \text{Extract-Min}(\mathbf{Q})$
 - $S \leftarrow S \cup \{u\}$
 - for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u,v)}$
 - then $d(v) \leftarrow d(u) + l_{(u, v)}$

 $\mathbf{S}=\{s, c, e\}$

0

 $\mathbf{Q}{=}\{\mathrm{b},\mathrm{d}\}$

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$ • do $d(v) \leftarrow \infty$
- S ← Ø
- $Q \leftarrow N$
- while **Q**≠∅
 - $\bullet \mathbf{do} \ u \leftarrow \text{Extract-Min}(\mathbf{Q})$
 - $S \leftarrow S \cup \{u\}$
 - for each $v \in Adj(u)$
 - do if $d(v) > d(u) + l_{(u,v)}$
 - then $d(v) \leftarrow d(u) + l_{(u, v)}$

 $\mathbf{S} = \{s, c, e\}$

7

<u>10</u> ∞

0

 $\mathbf{Q}{=}\{\mathrm{b},\mathrm{d}\}$

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$ • do $d(v) \leftarrow \infty$
- S ← Ø
- $Q \leftarrow N$
- while **Q**≠∅
- do $u \leftarrow \text{Extract-Min}(\mathbf{Q})$
 - $S \leftarrow S \cup \{u\}$
 - for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u,v)}$
 - then $d(v) \leftarrow d(u) + l_{(u, v)}$

 $\mathbf{Q} = \{d\}$

0

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$ • do $d(v) \leftarrow \infty$
- S ← Ø
- $Q \leftarrow N$
- while $\mathbf{Q} \neq \emptyset$
 - **do** $u \leftarrow \text{Extract-Min}(\mathbf{Q})$
 - $S \leftarrow S \cup \{u\}$
 - for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u,v)}$
 - then $d(v) \leftarrow d(u) + l_{(u, v)}$

 $\mathbf{S}{=}\{\mathrm{s},\mathrm{c},\mathrm{e},\mathrm{b}\}$

 $\mathbf{Q} = \{d\}$

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$ • do $d(v) \leftarrow \infty$
- S ← Ø
- $Q \leftarrow N$
- while **Q**≠∅
 - $\Box \, \mathbf{do} \, u \leftarrow \quad \text{Extract-Min}(\mathbf{Q})$
 - $S \leftarrow S \cup \{u\}$
 - for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u,v)}$
 - then $d(v) \leftarrow d(u) + l_{(u, v)}$

 $\mathbf{S}{=}\{\mathrm{s},\mathrm{c},\mathrm{e},\mathrm{b}\}$

 $\mathbf{Q} = \{d\}$

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$ $\Box \operatorname{do} d(v) \leftarrow \infty$
- •S ← Ø
- $Q \leftarrow N$
- while $\mathbf{Q} \neq \emptyset$
- do $u \leftarrow \text{Extract-Min}(\mathbf{Q})$
 - $S \leftarrow S \cup \{u\}$
 - for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u,v)}$
 - then $d(v) \leftarrow d(u) + l_{(u,v)}$

7

 10∞

10

Q={}

0

∞ 11

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$ • do $d(v) \leftarrow \infty$
- S ← Ø
- $Q \leftarrow N$
- while **Q**≠∅
 - $\Box \ \mathbf{do} \ u \leftarrow EXTRACT-MIN(\mathbf{Q})$
 - $\mathbf{S} \leftarrow \mathbf{S} \cup \{u\}$
 - for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u,v)}$
 - then $d(v) \leftarrow d(u) + l_{(u, v)}$

 $\textbf{S}{=}\{s,c,e,b,d\}$

Q={}

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$ • do $d(v) \leftarrow \infty$
- S ← Ø
- $Q \leftarrow N$
- while **Q**≠∅
 - $\Box \, \mathbf{do} \, u \leftarrow \quad \text{Extract-Min}(\mathbf{Q})$
 - $S \leftarrow S \cup \{u\}$
 - for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u,v)}$
 - then $d(v) \leftarrow d(u) + l_{(u, v)}$

 $\textbf{S}{=}\{s,c,e,b,d\}$

Q={}

0

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$ • do $d(v) \leftarrow \infty$
- **S** ← Ø
- $Q \leftarrow N$
- while **Q**≠∅
 - $\Box \ \mathbf{do} \ u \leftarrow EXTRACT-MIN(\mathbf{Q})$
 - $S \leftarrow S \cup \{u\}$
 - for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u,v)}$
 - then $d(v) \leftarrow d(u) + l_{(u, v)}$

40

 $\textbf{S}{=}\{s, c, e, b, d\}$

Q={}

Dijkstra's algorithm- Cnt.

- Dijkstra's algorithm computes the shortest distances btw a start node and all other nodes in the graph (not only a target node)!
- Assumptions:
 - the graph is connected, and
 - the weights are nonnegative

Dijkstra's algorithm- Analysis

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$ • do $d(v) \leftarrow \infty$
- •S ← Ø
- $Q \leftarrow N$
- while **Q**≠∅
 - $\Box \ \mathbf{do} \ u \leftarrow EXTRACT-MIN(\mathbf{Q})$
 - $S \leftarrow S \cup \{u\}$
 - for each $v \in Adj(u)$
 - do if $d(v) > d(u) + l_{(u,v)}$ • then $d(v) \leftarrow d(u) + l_{(u,v)}$ times

Time = Θ (*N*·*T*_{EXTRACT-MIN} + *E*·*T*_{Relaxation}), Handshaking Lemma!

|N|

times

Dijkstra's algorithm- Analysis- Cnt.

Time = Θ (*N*·*T*_{EXTRACT-MIN} +*E*·*T*_{Relaxation})

Q $T_{\text{EXTRACT-MIN}}$ $T_{\text{DECREASE-KEY}}$ TotalArrayO(N)O(1) $O(N^2)$

Ch.24 Single Source Shortest Paths [CLRS]

Network Basics 3

Graph ML

Department of Computer Science University of Massachusetts, Lowell

Hadi Amiri <u>hadi@cs.uml.edu</u>

Lecture Topics

- Triadic closure and Bridges
- Neighborhood overlap
- The Strength of Weak Ties
- Structural Holes
- Node Centrality
- Edge Centrality
- Homophily
- Snapshot Algorithm
- Network Segregation

Triadic Closure

- If two nodes in a network have a neighbor in common, then there is an increased likelihood they will become connected themselves.
 - Reasons for Triadic Closure:
 - Opportunity, Trust, Incentives
- Clustering Coefficient
 - A measure to capture the prevalence of Triadic Closure
- F A C

= 1/6

Defined for nodes

CF(A) =

Number of connections btw A's friends

Possible Number of connections btw A's friends

Bridge

- An edge is bridge if deleting it would put its two ends into two different connected components.
 - Bridges provide access to parts of the network that are unreachable by other means!

Local Bridge

- An edge such that its endpoints have no friends in common! → edge not in a triangle!
 - deleting a local bridge increases the distance btw its endpoints to a value strictly > 2.

The Strength of Weak Ties

- Weak ties (acquaintances) connect us to new sources of information.
 - This dual role as weak connections but also valuable links to hard-to-reach parts of the network - is the surprising strength of weak ties.

Neighborhood Overlap

• A measure to capture bridgeness of an edge!

1. Relation btw neighborhood overlap of an edge and its tie strength?

- 1. Relation btw neighborhood overlap of an edge and its tie strength?
 - Neighborhood overlap should grow as tie strength Grows.

2. How weak ties serve to link different communities that each contain large number of stronger ties?

- 2. How weak ties serve to link different communities that each contain large number of stronger ties?
 - Delete edges from the network one at a time, start with the weakest ties first!
 - The giant component shrinks rapidly.

Structural Holes

Structural hole: the "empty space" in the net btw 2 sets of nodes that don't interact closely!

A node with multiple local bridges spans a structural hole in the net.

B has early access to info!

B is a gatekeeper and controls the ways in which groups learn about info. She has power!

B may try to prevent triangles from forming around the local bridges she is part of!

How long these local bridges last before triadic closure produces short-cuts around them?

Node Centrality

- Degree centrality
 - A node is central if it has ties to many other nodes
- Closeness centrality
 - A node is central if it is "close" to other nodes
- Betweenness centrality
 - A node is central if other nodes have to go through it to get to each other

Edge Centrality

- Betweenness:
 - Let's assume 1 unit of "flow" will pass over all shortest path btw any pair of nodes A and B.
 - Betweenness of an edge is the total amount of flow t carries!
 - If there are *k* shortest path btw A and B, then 1/k units of flow will go along each shortest path!
- Girvan-Newman Algorithm:
 - Repeat until no edges are left:
 - Calculate betweenness of edges
 - Remove edges with highest betweenness

Homophily

- Links connect people with *similar* characteristics.
- Homophily has two mechanisms for link formation:
 - Selection:
 - Selecting friends with similar characteristics
 - Individual characteristics drive the formation of links
 - Immutable characteristics
 - Social Influence (socialization)
 - Modify behaviors to make them close to behaviors of friends
 - Existing links influence the individual characteristics of he nodes
 - Mutable characteristics

Homophily- Cnt.

- Focal Closure: B and C people, A focus
- **Selection**: B links to similar C (common focus)

(b) Focal closure

Homophily- Cnt.

- Membership Closure: A and B people, C focus
- **Social Influence**: B links to C influenced by A

Snapshot Algorithm

Tracking link formation in large scale datasets based on the above mechanisms

- Take 2 snapshots of network at different times: S(1), S(2).
- 2) For each *k*, find all pairs of nodes in **S(1)** that are not directly connected but have *k* common friends.
- 3) Compute *T(k)* as the fraction of these pairs connected in S(2).
 estimate for the probability that a link will form btw 2 people with *k* common friends.
- 4) Plot T(k) as a function of k
- T(0) is the rate of link formation when it does not close a triangle

Spatial Model of Segregation

Schelling model Local preferences of individuals can produce unintended global patterns.

Effects of homophily in the formation of ethnically and racially **homogeneous neighborhoods** in cities.

People live near others like them!!

(a) Chicago, 1940

(b) Chicago, 1960

Color the map wrt to a given race :

--Lighter: Lowest percentage of the race

--Darker: highest percentage of the race.

(Optional) Reading

- Ch.02 Graphs [NCM]
- Ch.o3 Strong and Weak Ties [NCM]