
Network Basics 1

Graph ML

Department of Computer Science
University of Massachusetts, Lowell

Hadi Amiri
hadi@cs.uml.edu

Lecture Topics

2

• Graph Theory
▫ Node degree
▫ Graph density
▫ Complete Graph
▫ Distance and Diameter
▫ Adjacency matrix
▫ Graph Connectivity
▫ Reachability
▫ Sub-graphs
▫ Graph Types

Graph Theory
• A graph consists of
▫ N: a set of nodes (items, entities, people, etc), and
▫ E: a set of links or edges between nodes

• Graph is a way to specify relationships / links

amongst a set of nodes.

•  We define
•  N=|N| à size of N
•  E=|E| à size of E

3

Graph Theory. Cnt.
• Nodes i and j are adjacent or neighbors if:
▫ There is an edge btw them!
�  i є N
�  j є N
� (i, j) є E

i j

4

Sample Graphs 1.
•  “Lives Near” Graph

nodes

Links or edges

Graph

5 Source: Social network analysis: Methods and applications. Wasserman, Stanley. Cambridge university press, 1994.

Node Degree d(i)
• Given Node i, its degree

d(i) is:
▫ the number nodes adjacent

to it.

Degree
2
1
1
2
3
3

6 Source: Social network analysis: Methods and applications. Wasserman, Stanley. Cambridge university press, 1994.

Graph Density
• How many edges are possible?

j

a

b

c i

d

7

Graph Density- Cnt.
• (N-1) + (N-2) + (N-3) + … + 1 = N * (N-1) / 2

j

a

b

c i

d

8

Graph Density- Cnt.
• Graph Density of a given graph G is determined by:
▫ the proportion of all possible edges that are present in

the graph.
▫ with N nodes and E edges, graph density is:

9

Density = 2 * E / N * (N-1)

Complete Graph
•  If all edges are present, then all nodes are adjacent

(neighbors), and the graph is a Complete Graph.

j

a

b

c i

d

What is the density of a complete graph?

10

Distance and Diameter
• Distance btw node i and j: d(i,j)
▫ length of the shortest path between i and j

• Diameter of a graph
▫ the maximum value of d(i,j) for all i and j

The path with min number of edges.

11

Distance and Diameter- Cnt.

12 Source: Social network analysis: Methods and applications. Wasserman, Stanley. Cambridge university press, 1994.

distance

What is the distance and diameter of a complete graph?

Adjacency Matrix

• Each row or column represents a node!

A = AT

Properties of adjacency matrix à next session

n1 n2 n3 n4 n5

n1 0 1 1 0 0
n2 1 0 1 1 0
n3 1 1 0 1 0
n4 0 1 1 0 1
n5 0 0 0 1 0

A =

13

Graph Connectivity

14

•  Indirect connections between nodes:
▫ Walks
▫ Trails
▫ Paths

Graph Connectivity- Cnt.

15

• Walk
▫ A sequence of nodes and edges that starts and ends

with nodes where each node is incident to the edges
following and preceding it.

•  Trail
▫ A trail is a walk with distinct edges

•  Path
▫ A path is a walk with distinct nodes & edges.

•  The length of a walk, trail, or path is the number of
edges in it.

Graph Connectivity- Cnt.
• Walk
▫ A sequence of nodes and edges that starts and ends

with nodes where each node is incident to the edges
following and preceding it.

16 Source: Social network analysis: Methods and applications. Wasserman, Stanley. Cambridge university press, 1994.

Graph Connectivity- Cnt.
• Walk
▫ A sequence of nodes and edges that starts and ends

with nodes where each node is incident to the edges
following and preceding it.

Sample Walk:
W=n1 l2 n4 l3 n2 l3 n4

17 Source: Social network analysis: Methods and applications. Wasserman, Stanley. Cambridge university press, 1994.

Graph Connectivity- Cnt.
•  Trail
▫ A trail is a walk in which all edges are distinct,

although some node(s) may be included more than
once.

18 Source: Social network analysis: Methods and applications. Wasserman, Stanley. Cambridge university press, 1994.

Graph Connectivity- Cnt.
•  Trail
▫ A trail is a walk in which all edges are distinct,

although some node(s) may be included more than
once.

Sample Trail:
T=n4 l3 n2 l4 n3 l5 n4 l2 n1

19 Source: Social network analysis: Methods and applications. Wasserman, Stanley. Cambridge university press, 1994.

Graph Connectivity- Cnt.
•  Path
▫ A path is a walk in which all nodes and all edges are

distinct.

20 Source: Social network analysis: Methods and applications. Wasserman, Stanley. Cambridge university press, 1994.

Graph Connectivity- Cnt.
•  Path
▫ A path is a walk in which all nodes and all edges are

distinct.

Sample Path:
P=n1 l2 n4 l3 n2

21 Source: Social network analysis: Methods and applications. Wasserman, Stanley. Cambridge university press, 1994.

Graph Connectivity- Cnt.
•  Is this a Walk? Trail? Path?
▫ We call a closed path is a Cycle!

n2 l4 n3 l5 n4 l3 n2

22 Source: Social network analysis: Methods and applications. Wasserman, Stanley. Cambridge university press, 1994.

Reachability
•  If there is a path between nodes i and j, then i

and j are reachable from each other.

23

Connected Graph
• A graph is connected if every pair of its nodes

are reachable from each other
▫ i.e. there is a path between them.

24

Connected Graph

and this graph disconnected?

Disconnected Graph

How can we make this graph connected?

Source: Social network analysis: Methods and applications. Wasserman, Stanley. Cambridge university press, 1994.

Sub-graphs

25

• Graph Gs is a sub-graph of G if its nodes and edges
are a subset of G’s nodes and edges respectively.

Sub-graphs- Cnt.
• Graph Gs is a sub-graph of G if its nodes and edges

are a subset nodes and edges of G respectively.

a

b

c i

G

a
d

c

d

i Gs2

a

b

c

d

i
Gs1

26

Graph Types

27

•  Several types of graphs:
▫ Bipartite graphs
▫ Digraphs
▫ Multigraphs
▫ Hypergraphs
▫ Weighted/Signed

Graph Types- Bipartite Graphs

b

x

y

c

z
d

• A bipartite graph is an undirected graph in which
▫ nodes can be partitioned into two (disjoint) sets N1

and N2 such that:
�  (u, v) ∈ E implies either u ∈ N1 and v ∈ N2 or vice

versa
▫ So, all edges go between the two sets N1 and N2 but
not within N1 or N2.

a

28

N1={a,b,c,d}

N2={x,y,z}

N1=movies N2=actors

Graph Types- Digraphs
• Digraphs or Directed Graphs
▫ Edges are directed

• Adjacency:
▫ There is a direct edge btw nodes!
�  i є N
�  j є N
� (i, j) є E

i j

29

Graph Types- Digraphs- Cnt.

30

• Node Indegree and Outdegree
▫ Indegree
�  The indegree of a node, dI(i), is the number of nodes

that link to i,
▫ Outdegree
�  The outdegree of a node, dO(i), is the number of nodes

that are linked by i,

•  Indegree: number of edges terminating at i.
• Outdegree: number of edges originating at i.

Graph Types- Digraphs- Cnt.

A != AT

0 1 0 0 1 0
0 0 1 0 0 1
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 1 0 0 0 0

A =

2
2
1
1
1
1

0 3 1 0 2 2

31

n

dO (ni) = ∑
Aij

j =1

n

d I (n j) = ∑
Aij

i=1

Graph Types- Digraphs- Cnt.
• Density of Digraph:
▫ Number of all possible edges in Digraph?
� N * (N-1)

𝑬
𝑵 ∗ (𝑵 − 𝟏)

32

Graph Types- Digraphs- Cnt.

33

• Connectivity
▫ Walks
▫ Trails
▫ Paths

•  The same as before just links are directed!

Graph Types- Multigraphs

34

• A Multigraph (or multivariate graph) G consists of:
▫ a set of nodes, and
▫ two or more sets of edges, E+ = {E1, E2, …, Er}, r is

the number of edge sets.

Multigraph 1.

35 Source: the geography of transport systems http://www.people.hofstra.edu/geotrans/

Multigraph 2.

36

Graph Types- Multigraphs- Cnt.

37

• Number of edges btw any two nodes in a
multigraph?
▫ E+ = {E1, E2, …, Er}, r is the number of sets of edges
�  Undirected multigraph

� [0, r]
�  Directed multigraph

� [0, 2*r]

Graph Types- Hypergraphs

38

• A hypergraph is a graph in which an edge can
connect any number of nodes.

•  In a hypergraph, E is a set of non-empty subsets of
N called hyperedges.

Graph Types- Hypergraphs- Cnt.
• A hypergraph is a graph in which an edge can

connect any number of nodes.
•  In a hypergraph, E is a set of non-empty subsets of

N called hyperedges.

N={v1, v2, v3, v4, v5, v6, v7}

E={e1, e2, e3, e4}=

{{v1, v2, v3}, {v2, v3}, {v3, v5, v6}, {v4}}

39

Graph Types- Hypergraphs- Cnt.
• Applications:

• Recom. systems (communities as edges),
•  Image retrieval (correlations as edges),
• Bioinformatics (interactions or semantic

types as edges).

N={v1, v2, v3, v4, v5, v6, v7}

E={e1, e2, e3, e4}=

{{v1, v2, v3}, {v2, v3}, {v3, v5, v6}, {v4}}

40

Weighted/Signed Graphs

41

• Edges may carry additional information
▫ Tie strength à how good are two nodes as friends?
▫ Distance à how long is the distance btw two cities?
▫ Delay à how long does the transmission take btw

two cities?
▫ Signs à two nodes are friends or enemies?

Reading

42

• Ch. 22 Elementary Graph Algorithms [CLRS]

Network Basics 2

Graph ML

Department of Computer Science
University of Massachusetts, Lowell

Hadi Amiri
hadi@cs.uml.edu

Lecture Topics
• Connected Components
• Breadth-First Search
• Depth-First Search
•  Shortest Path Algorithm
▫ Dijkstra’s algorithm

2

Connected Components
• Connected component of a graph is a subset of

nodes such that:
▫ every node in the subset has a path to every other;

and
▫ the subset is not part of a bigger component.

3

Connected Components
• Connected component of a graph is a subset of

nodes such that:
▫ every node in the subset has a path to every other;

and
▫ the subset is not part of a bigger component.

4

Connected Components- Cnt.

5

Connected Components- Cnt.

6

Breadth & Depth-First Search

7

• General techniques for traversing graphs!
▫ Start from a given node s (i.e. start node) and visit all

nodes and edges in the graph.
• Compute the connected components of graph!
▫ Use components to determine whether graph is

connected!
�  How?
▫ Use components to determine if there is a path btw

node pairs!
�  How?

Breadth-First Search

8

•  Start with s
• Visit all neighbors of s
▫ these are called level-1 nodes

• Visit all neighbors of level-1 nodes
▫ these are called level-2 nodes

• Repeat until all nodes are visited.
▫ Each Node is only visited once.

• Key Point:
▫ All level-k nodes should be visited before any level-

(k+1) node!

Example 1. BFS
• Graph G:

•  Its BFS traversal:

s

Example 1. BFS –Cnt.
• BFS traversal:
▫ Distance to root at

level-i?
▫ Components?
�  Connectivity?
�  Paths?

10

Depth-First Search

11

•  Starts from s
• Explores as far as possible along each branch before

backtracking.
�  Visit a neighbor of s [say v1]
�  Visit a neighbor of v1 [say v2]
�  Repeat until all nodes are visited.

Shortest Path Algorithms
• Given a weighted directed graph and two nodes s

and t, find the shortest path from s to t.
▫ Cost of path = sum of edge weights in path

12

Shortest Path Algorithms- Cnt.

13

• Dijkstra’s algorithm
•  The Bellman-Ford algorithm
•  The Floyd-Warshall algorithm
•  Johnson's algorithm
• Etc.

Shortest Path Algorithms- Cnt.

•  Shortest path from s to t?

s

3

t

2

6

7

4
5

23

18

2

9

14

15 5

30

20

44

16

11

6

19

14

6

Shortest Path Algorithms- Cnt.

•  Shortest Path= s-2-3-5-t
• Cost of path = 9 + 23 + 2 + 16 = 48.

s

3

t

2

6

7

4
5

23

18
2

9

14

15 5

30

20

44

16

11

6

19

6

15

Shortest Path Algorithms- Cnt.

16

• Applications
▫ Small World Phenomenon
▫ Internet packet routing
▫ Flight reservations
▫ Driving directions
▫ …

Dijkstra algorithm
• Weighted Directed graph G = (N, E),
▫ s: source node
▫ t: target node
▫ l(u,v): weight of the edge btw nodes u and v
▫ d(u): shortest path distance from s to u.
�  sum of edge weights in path

• We aim to compute d(t)!

s t

v d(u)
u

λu,v

17

d(t)

Dijkstra algorithm- Cnt.

t s
d(s)=0

∞

18

∞

∞

∞

∞

•  Initialization?
▫ d(s) = 0
▫ d(u)= ∞ for all other nodes

∞

∞

∞

Dijkstra algorithm- Cnt.
•  To find the shortest path from s to t:
▫ Maintain a set of explored nodes S for which we

have determined the shortest path distance from s to
any u є S.
▫ Repeatedly expand S.

s t

v d(u)
u

S

19

λu,v

Dijkstra algorithm- Cnt.
• Repeatedly expand S?
▫ Repeatedly update d(.) for the unexplored

nodes:

s t

v d(u)
u

S

20

λu,v

if d(v) > d(u) + l (u, v)
then d(v) ← d(u) + l(u,v)

▫ add v with smallest d(v) to S.

Dijkstra algorithm- Cnt.
• d(s) ← 0
•  for each v ∈ N – {s}
▫ do d(v) ← ∞

• S ← ∅
• Q ← N ⊳ Q is a set maintaining N – S
• while Q ≠ ∅
▫ do u ← EXTRACT-MIN(Q)
� S ← S ∪ {u}
�  for each v ∈ Adj(u)
� do if d(v) > d(u) + l(u,v)
▫ then d(v) ← d(u) + l(u,v)

Set of explored nodes

Set of unexplored nodes

Update d(.) for all
neighbors of u: this is
called relaxation!

Returns node u ∈ Q that
has minimum d(u)

Add it to explored nodes

21

Example 1.
• d(s) ← 0
•  for each v ∈ N – {s}
▫ do d(v) ← ∞

• S ← ∅
• Q ← N
• while Q ≠ ∅
▫ do u ← EXTRACT-MIN(Q)
� S ← S ∪ {u}
�  for each v ∈ Adj(u)
� do if d(v) > d(u) + l(u, v)
▫ then d(v) ← d(u) + l(u,v)

s

b d

c e

10

3
1 4 7 9 8

2

2

22

Example 1.
• d(s) ← 0
•  for each v ∈ N – {s}
▫ do d(v) ← ∞

• S ← ∅
• Q ← N
• while Q ≠ ∅
▫ do u ← EXTRACT-MIN(Q)
� S ← S ∪ {u}
�  for each v ∈ Adj(u)
� do if d(v) > d(u) + l(u, v)
▫ then d(v) ← d(u) + l(u, v)

s

10

3
1 4 7 9 8

2

2

0

c

∞

e

∞

∞

d

∞

b

S={}

Q={s, b, c, d, e}

23

Example 1.
• d(s) ← 0
•  for each v ∈ N – {s}
▫ do d(v) ← ∞

• S ← ∅
• Q ← N
• while Q ≠ ∅
▫ do u ← EXTRACT-MIN(Q)
� S ← S ∪ {u}
�  for each v ∈ Adj(u)
� do if d(v) > d(u) + l(u, v)
▫ then d(v) ← d(u) + l(u, v)

10

3
1 4 7 9 8

2

2

0

c

∞

e

∞

∞

d

∞

b

S={}

Q={b, c, d, e}

s

ss

24

Example 1.
• d(s) ← 0
•  for each v ∈ N – {s}
▫ do d(v) ← ∞

• S ← ∅
• Q ← N
• while Q ≠ ∅
▫ do u ← EXTRACT-MIN(Q)
� S ← S ∪ {u}
�  for each v ∈ Adj(u)
� do if d(v) > d(u) + l(u, v)
▫ then d(v) ← d(u) + l(u, v)

s

10

3
1 4 7 9 8

2

2

0

c

∞

e

∞

∞

d

∞

b

S={s}

Q={b, c, d, e}

25

Example 1.
• d(s) ← 0
•  for each v ∈ N – {s}
▫ do d(v) ← ∞

• S ← ∅
• Q ← N
• while Q ≠ ∅
▫ do u ← EXTRACT-MIN(Q)
� S ← S ∪ {u}
�  for each v ∈ Adj(u)
� do if d(v) > d(u) + l(u, v)
▫ then d(v) ← d(u) + l(u, v)

s

10

3
1 4 7 9 8

2

2

0

e

∞

∞

d

S={s}

Q={b, c, d, e}

10 ∞

b

26

c
3 ∞

Example 1.
• d(s) ← 0
•  for each v ∈ N – {s}
▫ do d(v) ← ∞

• S ← ∅
• Q ← N
• while Q ≠ ∅
▫ do u ← EXTRACT-MIN(Q)
� S ← S ∪ {u}
�  for each v ∈ Adj(u)
� do if d(v) > d(u) + l(u, v)
▫ then d(v) ← d(u) + l(u, v)

s

10

3
1 4 7 9 8

2

2

0

e

∞

∞

d

S={s}

Q={b, d, e}

10 ∞

b

c

cc
3 ∞

27

Example 1.
• d(s) ← 0
•  for each v ∈ N – {s}
▫ do d(v) ← ∞

• S ← ∅
• Q ← N
• while Q ≠ ∅
▫ do u ← EXTRACT-MIN(Q)
� S ← S ∪ {u}
�  for each v ∈ Adj(u)
� do if d(v) > d(u) + l(u, v)
▫ then d(v) ← d(u) + l(u, v)

s

10

3
1 4 7 9 8

2

2

0

e

∞

∞

d

S={s, c}

Q={b, d, e}

10 ∞

b

c
3 ∞

28

Example 1.
• d(s) ← 0
•  for each v ∈ N – {s}
▫ do d(v) ← ∞

• S ← ∅
• Q ← N
• while Q ≠ ∅
▫ do u ← EXTRACT-MIN(Q)
� S ← S ∪ {u}
�  for each v ∈ Adj(u)
� do if d(v) > d(u) + l(u, v)
▫ then d(v) ← d(u) + l(u, v)

s

10

3
1 4 7 9 8

2

2

0

S={s, c}

Q={b, d, e}

c
3 ∞

e

∞
5

30

7
10 ∞

b

∞ 1 1

d

Example 1.
• d(s) ← 0
•  for each v ∈ N – {s}
▫ do d(v) ← ∞

• S ← ∅
• Q ← N
• while Q ≠ ∅
▫ do u ← EXTRACT-MIN(Q)
� S ← S ∪ {u}
�  for each v ∈ Adj(u)
� do if d(v) > d(u) + l(u, v)
▫ then d(v) ← d(u) + l(u, v)

s

10

3
1 4 7 9 8

2

2

0

S={s, c}

Q={b, d}

c
3 ∞

7
10 ∞

b

e

ee

∞
5

30

∞ 1 1

d

Example 1.
• d(s) ← 0
•  for each v ∈ N – {s}
▫ do d(v) ← ∞

• S ← ∅
• Q ← N
• while Q ≠ ∅
▫ do u ← EXTRACT-MIN(Q)
� S ← S ∪ {u}
�  for each v ∈ Adj(u)
� do if d(v) > d(u) + l(u, v)
▫ then d(v) ← d(u) + l(u, v)

s

10

3
1 4 7 9 8

2

2

0

S={s, c, e}

Q={b, d}

c
3 ∞

e

∞
5

7
10 ∞

b

31

∞ 1 1

d

Example 1.
• d(s) ← 0
•  for each v ∈ N – {s}
▫ do d(v) ← ∞

• S ← ∅
• Q ← N
• while Q ≠ ∅
▫ do u ← EXTRACT-MIN(Q)
� S ← S ∪ {u}
�  for each v ∈ Adj(u)
� do if d(v) > d(u) + l(u, v)
▫ then d(v) ← d(u) + l(u, v)

s

10

3
1 4 7 9 8

2

2

0

S={s, c, e}

Q={b, d}

c
3 ∞

e

∞
5

7
10 ∞

b

32

∞ 1 1

d

Example 1.
• d(s) ← 0
•  for each v ∈ N – {s}
▫ do d(v) ← ∞

• S ← ∅
• Q ← N
• while Q ≠ ∅
▫ do u ← EXTRACT-MIN(Q)
� S ← S ∪ {u}
�  for each v ∈ Adj(u)
� do if d(v) > d(u) + l(u, v)
▫ then d(v) ← d(u) + l(u, v)

s

10

3
1 4 7 9 8

2

2

0

S={s, c, e}

Q={d}

c
3 ∞

e

∞
5

b

7
10 ∞

bb

33

∞ 1 1

d

Example 1.
• d(s) ← 0
•  for each v ∈ N – {s}
▫ do d(v) ← ∞

• S ← ∅
• Q ← N
• while Q ≠ ∅
▫ do u ← EXTRACT-MIN(Q)
� S ← S ∪ {u}
�  for each v ∈ Adj(u)
� do if d(v) > d(u) + l(u, v)
▫ then d(v) ← d(u) + l(u, v)

s

10

3
1 4 7 9 8

2

2

0

S={s, c, e, b}

Q={d}

c
3 ∞

e

∞
5

7
10 ∞

b

34

∞ 1 1

d

Example 1.
• d(s) ← 0
•  for each v ∈ N – {s}
▫ do d(v) ← ∞

• S ← ∅
• Q ← N
• while Q ≠ ∅
▫ do u ← EXTRACT-MIN(Q)
� S ← S ∪ {u}
�  for each v ∈ Adj(u)
� do if d(v) > d(u) + l(u, v)
▫ then d(v) ← d(u) + l(u, v)

s

10

3
1 4 7 9 8

2

2

0

S={s, c, e, b}

Q={d}

c
3 ∞

e

∞
5

7
10 ∞

b

35

9
∞ 1 1

d

Example 1.
• d(s) ← 0
•  for each v ∈ N – {s}
▫ do d(v) ← ∞

• S ← ∅
• Q ← N
• while Q ≠ ∅
▫ do u ← EXTRACT-MIN(Q)
� S ← S ∪ {u}
�  for each v ∈ Adj(u)
� do if d(v) > d(u) + l(u, v)
▫ then d(v) ← d(u) + l(u, v)

s

10

3
1 4 7 9 8

2

2

0

S={s, c, e, b}

Q={}

c
3 ∞

e

∞
5

7
10 ∞

b

d

36

9
∞ 1 1

d

Example 1.
• d(s) ← 0
•  for each v ∈ N – {s}
▫ do d(v) ← ∞

• S ← ∅
• Q ← N
• while Q ≠ ∅
▫ do u ← EXTRACT-MIN(Q)
� S ← S ∪ {u}
�  for each v ∈ Adj(u)
� do if d(v) > d(u) + l(u, v)
▫ then d(v) ← d(u) + l(u, v)

s

10

3
1 4 7 9 8

2

2

0

S={s, c, e, b, d}

Q={}

c
3 ∞

e

∞
5

7
10 ∞

b

37

9
∞ 1 1

d

Example 1.
• d(s) ← 0
•  for each v ∈ N – {s}
▫ do d(v) ← ∞

• S ← ∅
• Q ← N
• while Q ≠ ∅
▫ do u ← EXTRACT-MIN(Q)
� S ← S ∪ {u}
�  for each v ∈ Adj(u)
� do if d(v) > d(u) + l(u, v)
▫ then d(v) ← d(u) + l(u, v)

s

10

3
1 4 7 9 8

2

2

0

S={s, c, e, b, d}

Q={}

c
3 ∞

e

∞
5

7
10 ∞

b

38

9
∞ 1 1

d

Example 1.
• d(s) ← 0
•  for each v ∈ N – {s}
▫ do d(v) ← ∞

• S ← ∅
• Q ← N
• while Q ≠ ∅
▫ do u ← EXTRACT-MIN(Q)
� S ← S ∪ {u}
�  for each v ∈ Adj(u)
� do if d(v) > d(u) + l(u, v)
▫ then d(v) ← d(u) + l(u, v)

s

b d
10

3
1 4 7 9 8

2

2

40

0

S={s, c, e, b, d}

Q={}

c

3

e

5

7 9

Dijkstra’s algorithm- Cnt.

40

• Dijkstra’s algorithm computes the shortest
distances btw a start node and all other nodes
in the graph (not only a target node)!

• Assumptions:
▫ the graph is connected, and
▫ the weights are nonnegative

Dijkstra’s algorithm- Analysis
• d(s) ← 0
•  for each v ∈ N – {s}
▫ do d(v) ← ∞

• S ← ∅
• Q ← N
• while Q ≠ ∅
▫ do u ← EXTRACT-MIN(Q)
� S ← S ∪ {u}
�  for each v ∈ Adj(u)
� do if d(v) > d(u) + l(u, v)
▫ then d(v) ← d(u) + l(u, v)

|N |
times

41

 degree (u)
times

Time = Θ (N·TEXTRACT-MIN + E·TRelaxation) , Handshaking Lemma!

Dijkstra’s algorithm- Analysis- Cnt.

Time = Θ (N·TEXTRACT-MIN + E·TRelaxation)

Q Total

Array

TEXTRACT-MIN TDECREASE-KEY

O(N) O(1) O(N2)

42

Reading

43

• Ch.24 Single Source Shortest Paths [CLRS]

Network Basics 3

Graph ML

Department of Computer Science
University of Massachusetts, Lowell

Hadi Amiri
hadi@cs.uml.edu

Lecture Topics

2

•  Triadic closure and Bridges
• Neighborhood overlap
•  The Strength of Weak Ties
•  Structural Holes
• Node Centrality
• Edge Centrality
• Homophily
•  Snapshot Algorithm
• Network Segregation

Triadic Closure
•  If two nodes in a network have a neighbor in

common, then there is an increased likelihood they
will become connected themselves.
▫ Reasons for Triadic Closure:
�  Opportunity, Trust, Incentives

• Clustering Coefficient
▫ A measure to capture the prevalence

of Triadic Closure
▫ Defined for nodes

Number of connections btw A’s friends

Possible Number of connections btw A’s friends
CF(A) = = 1/6

3

Bridge
• An edge is bridge if deleting it would put its two

ends into two different connected components.
▫ Bridges provide access to parts of the network that

are unreachable by other means!

4

Local Bridge
• An edge such that its endpoints have no friends in

common! à edge not in a triangle!
▫ deleting a local bridge increases the distance btw its

endpoints to a value strictly > 2.

5

The Strength of Weak Ties

6

• Weak ties (acquaintances) connect us to new
sources of information.
▫ This dual role - as weak connections but also valuable

links to hard-to-reach parts of the network - is the
surprising strength of weak ties.

Neighborhood Overlap
• A measure to capture bridgeness of an edge!

Don’t count A and B here!

Nodes

A-E

A-F

A-B

7

Neighborhood overlap

2/4

1/6

0/8 (Overlap = 0 for
local bridges)

Edges with very small neighborhood overlap can
be considered as “almost” local bridges

Questions

8

1.  Relation btw neighborhood overlap of an
edge and its tie strength?

Questions

9

1.  Relation btw neighborhood overlap of an
edge and its tie strength?
�  Neighborhood overlap should grow as tie strength

Grows.

Questions

10

2.  How weak ties serve to link different communities
that each contain large number of stronger ties?

Questions

11

2.  How weak ties serve to link different communities
that each contain large number of stronger ties?
�  Delete edges from the network one at a time, start

with the weakest ties first!
�  The giant component shrinks rapidly.

Structural Holes
Structural hole: the “empty space” in the net
btw 2 sets of nodes that don’t interact closely!

A node with multiple local
bridges spans a structural
hole in the net.

12

B has early access to info!

B is a gatekeeper and controls the
ways in which groups learn about
info. She has power!

B may try to prevent triangles
from forming around the local
bridges she is part of!

How long these local bridges last
before triadic closure produces
short-cuts around them?

Node Centrality

13

• Degree centrality
▫ A node is central if it has ties to many other nodes

• Closeness centrality
▫ A node is central if it is “close” to other nodes

• Betweenness centrality
▫ A node is central if other nodes have to go through it

to get to each other

Edge Centrality

14

• Betweenness:
�  Let’s assume 1 unit of “flow” will pass over all shortest

path btw any pair of nodes A and B.
�  Betweenness of an edge is the total amount of flow it

carries!
�  If there are k shortest path btw A and B, then 1/k units

of flow will go along each shortest path!
• Girvan-Newman Algorithm:
▫ Repeat until no edges are left:
�  Calculate betweenness of edges
�  Remove edges with highest betweenness

Homophily

15

•  Links connect people with similar characteristics.
• Homophily has two mechanisms for link formation:
▫ Selection:
�  Selecting friends with similar characteristics

�  Individual characteristics drive the formation of links
�  Immutable characteristics

▫ Social Influence (socialization)
�  Modify behaviors to make them close to behaviors of

friends
�  Existing links influence the individual characteristics of the

nodes
�  Mutable characteristics

Homophily- Cnt.
• Focal Closure:

B and C people, A focus

• Selection: B links to

similar C (common
focus)

16

Homophily- Cnt.
• Membership Closure:

A and B people, C focus

• Social Influence: B

links to C influenced by A

17

Snapshot Algorithm

1)  Take 2 snapshots of network at different times:
S(1), S(2).

2)  For each k, find all pairs of nodes in S(1) that are not

directly connected but have k common friends.

3)  Compute T(k) as the fraction of these pairs connected

in S(2).

4) Plot T(k) as a function of k T(0) is the rate of link formation when
it does not close a triangle

estimate for the probability that a link will form
btw 2 people with k common friends.

Tracking link formation in large scale datasets based on the above mechanisms

18

Spatial Model of Segregation

Color the map wrt to a given race :

--Lighter: Lowest percentage of the race
--Darker: highest percentage of the race.

19

Effects of homophily
in the formation of ethnically

and racially homogeneous

neighborhoods in cities.

People live near others like them!!

Schelling model
Local preferences of
individuals can produce
unintended global
patterns.

Questions?

20

(Optional) Reading

21

• Ch.02 Graphs [NCM]
• Ch.03 Strong and Weak Ties [NCM]

