Syllabus and Textbooks

The readings will be from select chapters of the following freely-available textbooks and lecture notes:

Syllabus

W1. Introduction to ML

  • Machine Learning definition, types, and applications

  • K-Nearest Neighbors (KNNs)

  • Course administration

  • Example: KNN example

W2. Naïve Bayes and Logistic Regression

  • Probabilistic classification

  • Estimating probability distributions

  • Contrasting Naïve Bayes (NB) and Logistic Regression

  • Example: NB example

  • Due: KNN

W3. Stochastic Gradient Descent (SGD)

  • Convexity and optimization

  • Step size selection

  • Regularized conditional log-likelihood

  • Example: SGD for Logistic Regression example

W4. Data Engineering and PAC learnability

  • Consistent hypotheses and finite spaces

  • Connection to Interval Learning

  • Example: Californian in Boston

  • Due: Logistic Regression I

W5. Support Vector Machines (SVMs)

  • Vector space models and linear classifiers

  • Theoretical guarantees of SVMs

  • Slack variables in SVMs

  • Kernel SVMs

  • Example: Slack example

  • Due: Logistic Regression II

W6. Boosting

  • Training error and weak learners

  • Gradient boosting

  • Example: Boosting example

W7. Regression

  • Linear regression

  • Regularization techniques

  • Example: Fitting a linear regression example

  • Example: Predicting MPG example

  • Due: SVM

  • Midterm Review: Weeks 1–8

W8. Clustering I and Midterm

  • k-Means

  • Example: k-Means example

  • Midterm: Assessing knowledge from Weeks 1–8

W9. Clustering II and Proposal Presentations

  • Gaussian Mixture Models

  • Limitations of k-means and GMMs

  • Project: Proposal presentation: initial feedback and guidance

  • Due: project proposal & slides

W10. Structured Perceptron and Multilayer Networks

  • Online learning % seperate this from structured prediciton maybe

  • Structured Perceptron

  • Activation and objective functions

  • Backpropigation algorithm

  • Example: POS Example

  • Example: Grid example

  • Due: Boosting

W11. Fairness

  • Introduction to fairness metrics and bias mitigation

  • Debiasing techniques

  • Example: Pneumonia example

W12. Training Paradigms

  • Introduction to curriculum learning

  • Sample difficulty and curriculum design

  • Applications and use cases

  • Performance metrics

  • Example: SVMs convergence and generalization example

W13. Machine Unlearning

  • Introduction to machine unlearning

  • Algorithmic approaches

  • Applications and use cases

  • Performance metrics

  • Example: User account unlearning example

  • Due: Regression

W14. Final Project Presentations and Reports

  • Project: Final presentation

  • Due: Final report, project slides